InterBase
Data Definition Guide

Disclaimer

Borland International, Inc. (henceforth, Borland) reserves the right to make changes
in specifications and other information contained in this publication without prior
notice. The reader should, in all cases, consult Borland to determine whether or not any
such changes have been made.

The terms and conditions governing the licensing of InterBase software consist solely
of those set forth in the written contracts between Borland and its customers. No
representation or other affirmation of fact contained in this publication including, but
not limited to, statements regarding capacity, response-time performance, suitability
for use, or performance of products described herein shall be deemed to be a warranty
by Borland for any purpose, or give rise to any liability by Borland whatsoever.

In no event shall Borland be liable for any incidental, indirect, special, or consequential
damages whatsoever (including but not limited to lost profits) arising out of or relating
to this publication or the information contained in it, even if Borland has been advised,
knew, or should have known of the possibility of such damages.

The software programs described in this document are confidential information and
proprietary products of Borland.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

© Copyright 1993 by Borland International, Inc. All Rights Reserved. InterBase, GDML,
and Pictor are trademarks of Borland International, Inc. All other trademarks are the
property of their respective owners.

Corporate Headquarters: Borland International Inc., 100 Borland Way, P. O. Box
660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, Belgium,
Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, New Zealand, Singapore, Spain, Sweden, Taiwan, and United
Kingdom.

Software Version: V3.0

Current Printing: October 1993
Documentation Version: v3.0.1

Reprint note

This documentation is a reprint of InterBase V3.0 documentation. It contains most of
the information from InterBase Previous Versions Documentation Corrections and In-
terBase Version 3.2 Documentation Corrections and a new index. For information on
features added since InterBase Version V3.0, consult the appropriate release notes.

Table Of Contents

Preface

Who Should Read this Book i . xiii
Usingthis Book i e Xiv
Text ConventionS u ittt ittt XV
Syntax Conventions.ttt s xvi
InterBase Documentation i i, xvii
Introduction

015 s 1= A 1-1
The Advantages of Using Gdef 1-3
Minimal Database Definition i, 1-4
For More Information ittt 1-5

Designing a Database

L0 1= s =3 2-1
Analyzing System Requirements il 2-2
AssigningaPrimary Key. 2-3
Normalizing Your Data i 2-5
Eliminating Repeating Groups. i 2-5
Removing Partially Dependent Fields 2-6
Removing Transitively Dependent Fields 2-7
Developing a Prototype Design i i 2-9
For More Information i 2-10

Creating a Database

13 2 1= 2 P 3-1
Sharing Data Across Networks. i, 3-2
Accessing Multiple Databases il 3-2

Creating a Single-File Database. 3-3
Creating a Database Remotely. 3-4

Tip for NFSUSErs.ovvvii e 3-5
Creating a Multiple-File Database. 3-5
Specifying Page Ranges and File Lengths. 3-5
Specifying Additional Files. 3-6
Overriding the Default Page Size. 3-7
CreatingaShadow File............ 3-7
Defining a Database. 3-9
Supported DDL Operationsouuuniuuinaninnn. .. 3-9
Entering DDL Statements 3-10
DDL Input Rules and Conventions 3-10
Entering DDL Definitions froma File. 3-11
Entering DDL Definitions Interactively 3-12
Extracting Metadata 3-14
Maintaining the Database. 3-15
Handling Gdef Errors 3-16
For More Information00, 3-17

4 Defining Fields

OVerVIEW. . . oo 4-1
Methods for Defining Fieldso iuiinn.... 4-1
Field Attributes. 4-2

Specifying a Datatype i 4-4
Specifying Floating Datatypesc.oiiiinnnennnnno... 4-7
Specifying String Datatypes. it 4-7
Specifying a Date Datatypecouiuniimnnennnnni.. 4-9
Specifying a Blob Datatype., 4-10

Defining Blob Segment Lengths. 4-10
Defining Blob Subtypes 4-10
UsingBlob Filters.......... 4-12
Specifying a Multi-Dimensional Array Datatype 4-13

vi

Array Considerationsc..ooiiiiiiiiiiiinaenns 4-14

Defining Field Validation Rules it 4-15
Representing Missing Valuesc.o i iiinnann, 4-16
Including Commentsottt 4-17
Defining a Sequential Number Generator 4-18
Providing Additional Qli Support i 4-19
Defining Edit Stringsttt 4-19
Defining Alternate Field Names. 4-20
Providing Alternative Column Names............................. 4-21
Modifying Fields. 4-22
Using the Modify Field Statement 4-22
Using the Modify Relation Statement 4-22
Considerations for Modifying Fields 4-23
Deleting a Field Definition i i, 4-24
For More Informationt 4-25
Defining Relations
(013 % 1=\ /2 5-1
Defining a New Field foraRelation 5-2
Including Existing Fieldsina Relation 5-3
Changing Field Attributes 5-3
Assigning a Specific Field Name 5-4
Defining Computed Fields foraRelation............................... 5-5
Defining External Relations 5-6
Using External Relations o il 5-6
Using External Relations for Data Access. 5-6
Using External Relations for Data Transfer 5-7
TransferringtheData. i, 5-7
Changing the Datatypes of Loaded Data. 5-8
ConvertingData i 5-9
Considerations for Defining and Using External Relations 5-10
Modifying Relations. 5-12
Modifying Global Field Characteristics 5-13

vii

viii

Modifying a Computed Field. 5-13
Deleting Relations i 5-14
For More Information i 5-15

Defining Views and Indexes

OV VIEW . . ettt e e e e e 6-1
Defining Viewsot 6-3
Limiting Fields 6-3
Limiting Records 6-3
Limiting Both Fieldsand Records 6-4
Accessing Records from Multiple Relations. 6-4
Example 1 — Retrieving Data from Multiple Relations............. 6-4
Example 2 — Checking for the Existence of Specific Records 6-5
Example 3 — Calculating the Value of a Computed Field........... 6-5
Considerations for Defining Views. 6-6
Modifying and Deleting Views 6-7
Defining Indexes 6-8
Index Definition Examples 6-8
Considerations for Defining Multi-Segment Indexes 6-9
Modifying Indexes e e 6-10
Special Considerations for Indexes. 6-10
Deleting and Adding Indexes it 6-11
For More Information ittt 6-12

Preserving Data Integrity

L0 Y 7 1= 7-1
Entity Integrity e 7-2
Referential Integrity 7-2
Domain Integrityo e 7-2
Application Integrity i e 7-3

Defininga Unique Index 7-4

Defining Validation Criteria............. 7-5

Using Triggerso v i e 7-6
Defininga Trigger. e 7-6

Trigger Definition Components 7-7

Defining Multiple Triggers i 7-8
Example of Defining Multiple Triggers. 7-8
Using Triggers with Views o e 7-10
Example of Using Triggers with Views 7-10
Updating a Trigger Definition ity 7-11
Modifying a Trigger Definition. oo, 7-11
Deleting a Trigger Definition. it 7-12
Deactivatinga Trigger 7-12
Special Considerations for Triggers oiintn 7-12
Undoing Triggers vvve vttt e 7-13
Transaction Processing.o 7-13
Trigger Interrelationships 7-14
More Trigger Examples. i 7-15
Example 1 — Storinga ForeignKey 7-15
Example 2 — Implementing a Cascading Delete 7-15
Example 3 — Implementing a Restricting Delete. 7-16
Example 4 — Implementing a Nullifying Delete 7-16
Example 5 — Returning Multiple Messages. 7-17
Example 6 — Implementing Full Referential Integrity 7-17
For More Informationc.o ittt 7-20

Securing Data and Metadata

OVEIVIEW . &« v e ettt e et et e e e e ettt e e e 8-1
Securingan Object. 8-2
Granting Access Privileges i 8-2
The InterBase Security Hierarchy 8-3

Defining a Security Classo i 8-4
If You Lock Yourself Out.t ittt 8-4
Required Authorityo 8-4
Example of Defining a Security Classt 8-4

Method 1 ...t e e e e e 8-5
Method 2 ... oot e 8-5

10

Considerations for Defining Security Classes..................... 8-6

Assigning a Security ClasstoanObject. 8-7
Designing a Security Scheme 8-8
Ordering Your Access Definitions 8-8
Using Views 8-9
Examples 8-11
Example 1 8-11
Example 2 8-13
Changing Your Security Scheme 8-14
Modifying a Security Class Definition 8-14
Modifying a Security Class Assignment. 8-14
For More Information 8-15

Creating User-Defined Functions

OVerVIeW. . .ot 9-1
Writing and Compiling Functions. 9-3
Defining Functions to the Database 9-6
Creating a Function Library i ... 9-9
Creating a Function Library Under Apollo 9-9
Creating a Function Library Under SunOS4.0...................... 9-10
Creating a Function Library Under Other UNIX platforms. 9-11
Creating a Function Library Under VMS 9-13
Accessing Functions. i 9-15
Accessing Functions From Qli 9-15
Accessing Functions From a Host-Language Program 9-15
Accessing the Functions From Gdef. 9-16
For More Information 9-17

Creating Event Alerters

OVervIeW. . .o 10-1
What Happens on the Database Side 10-3
What Happens on the Program Side 104
Transaction Controlof Events 10-6
For More Information 0. 10-7

11

12

Modifying Metadata with Dynamic DDL

OV TVI W . oottt ittt e e 11-1
Generating and Using DYN Commands. oo .. 11-3
Creatingthe DDL Source File i it 11-3
Backing Up Your Database. i 11-3
Compiling the DDL Source File it 11-4
Including the fileinaprogram. i iiiiinenns 11-6
Precompiling, Compiling, and Linking the Program. 11-7
Modifying the Data Definitions it 11-7
Additional Examplesot e 11-9
Apollo Ada Program Example. o il 11-9
Apollo FORTRAN Example.o i 11-10
Apollo Pascal Example i 11-11
VAX AdaExample.t 11-12
VAXBASICExampleotiiintiiiii i, 11-13
VAX CEXample. . ..ottt e 11-13
VAXCOBOLExamplecoiuinieneniiininiiiiinnnnn. 11-14
VAXFORTRANExamplettt 11-15
VAX Pascal Example. i 11-16
VAXPL/AExampleootniiii i 11-17
For More Informationcuiintiiiiiiiiiiina.. 11-19

Using Other Interfaces to Define Data

(07 s 1= 12-1
Data Definition Alternativesttt 12-1
Why Not Use Gdef? 12-2
Metadata Transaction Control, 12-3
Metadata Transaction Control Under Qli 12-3
Using Qli Metadata Commands. 12-3
Changing the System Relations Directly. 12-3
Metadata Transaction Control in Host-Language Programs 12-5
Sample Data Definition Update Program 12-6

For More Informationot 12-8

Xi

A System Relations

OVerview. . .. A-1
RDBSDATABASE A-2
RDBSDEPENDENCIESttt A-3
RDBSFIELDS.ottt e e A-4
RDBSFIELD_DIMENSIONSt A9
RDBSFILESot A-10
RDBSFILTERSo A-11
RDBSFORMATS A-12
RDBSFUNCTIONSo A-13
RDBSFUNCTION_ARGUMENTSt A-14
RDBSGENERATORS A-16
RDBSINDEX SEGMENTS.ttt A-17
RDBSINDICES A-18
RDBSPAGES A-20
RDBSRELATIONS.ottt A-21
RDBSRELATION _FIELDS.ttt A-24
RDB$SECURITY_CLASSESttt A-27
RDBSTRANSACTIONS. . ..ottt e A-28
RDBSTRIGGERS. A-29
RDBSTRIGGER_MESSAGES.ot A-31
RDBSTYPES ... i A-32
RDBSUSER_PRIVILEGES i, A-33
RDBSVIEW_RELATIONS. i A-34

B Sample Database Definition

Xii

Preface

This manual describes how to define and modify InterBase databases.

Who Should Read this Book

You should read this book if you want to learn how to define or modify InterBase data-
bases. Before you read this book, you should have previous experience with program-
ming languages and should understand the concepts of the relational data model.

xiii

Using this Book

Using this Book

This book contains the following chapters and appendixes:

Chapter 1

Chapter 2
Chapter 3
Chapter 4

Chapter 5

Chapter 6

Chapter 7
Chapter 8

Chatper 9

Chapter 10

Chapter 11
Chapter 12

Appendix A

Appendix B

Xiv

Provides a brief overview of data definition with
InterBase.

Describes how to design your database.
Describes how to create an InterBase database.

Describes how to define fields and describes how and
when to the use various field attributes.

Describes how to define fields for relations and how to
modify and delete relations.

Describes how to define, modify, and delete views and
indexes. It also discusses how to add indexes to existing
relations.

Describes database integrity rules and the InterBase
mechanisms for enforcing those rules.

Describes how to secure data and metadata by using
InterBase security classes.

Describes how to code, define, and access user-defined
functions, and how to create a function library for stor-
ing the functions.

Introduces the InterBase event alerter mechanism,
describes how this mechanism works, and discusses
event transaction control.

Describes how to modify metadata with dynamic DDL.

Describes how to use program interfaces other than
gdef to define data.

Presents an overview of the InterBase system relations
and presents a detailed description of each relation.

Shows a sample database definition.

Text Conventions

Text Conventions

This book uses the following text conventions.

boldface

italic

fixed width font

UPPER CASE

Indicates a command, option, statement, or utility. For
example:

¢ Use the commit command to save your changes.
¢ Use the sort option to specify record return order.

e The case_menu statement displays a menu in the
forms window.

e Use gdef to extract a data definition.

Indicates chapter and manual titles; identifies file-
names and pathnames. Also used for emphasis, or to
introduce new terms. For example:

¢ See the introduction to SQL in the Programmer’s
Guide.

e /usr/interbase/lock_header

* Subscripts in RSE references must be closed by
parentheses and separated by commas.

* C permits only zero-based array subscript refer-
ences.

Indicates user-supplied values and example code:
* $run sys$system:iscinstall
¢ add field population_1950 long

Indicates relation names and field names:

¢ Secure the RDB$SECURITY_CLASSES system
relation.

* Define a missing value of X for the
LATITUDE_COMPASS field.

XV

Syntax Conventions

Syntax Conventions

This book uses the following syntax conventions.

{braces}

[brackets]

fixed width font

commalist

italics

XVi

Indicates an alternative item:

¢ option::= {vertical | horizontal | transparent}

Indicates an optional item:

* dbfield-expression[not]missing

Indicates user-supplied values and example code:
® Srun sys$system:iscinstall

* add field population_1950 long

Indicates that the preceding word can be repeated to
create an expression of one or more words, with each
word pair separated by one comma and one or more
spaces.

For example,
field_def-commalist

resolves to:

field_defl field_defl,field_def]...]

Indicates a syntax variable:

create_blob blob-variable in
dbfield-expression

Separates items in a list of choices.

Indicates that parts of a program or statement have
been omitted.

InterBase Documentation

InterBase Documentation

The InterBase Version 3.0 documentation set contains the following books:

Getting Started with InterBase (INT0032WW2179A) provides an overview of InterBase
components and interfaces.

Database Operations (INT0032WW2178D) describes how to use InterBase utilities to
maintain databases.

Data Definition Guide (INT0032WW2178F) describes how to create and modify
InterBase databases.

DDL Reference (INT0032WW2178E) describes the function and syntax for each of the
data definition language clauses and statements. It also lists the standard error
messages for gdef.

DSQL Programmer’s Guide (INT0032WW2179C) describes how to program with
DSQL, a capability for accepting or generating SQL statements at runtime.

Forms Guide (INT0032WW2178A) describes how to create forms using the InterBase
forms editor, fred, and how to use forms in gli and GDML applications.

Programmer’s Guide (INT0032WW2178I) describes how to program with GDML, a
relational data manipulation language, and SQL, an industry standard language.

Programmer’s Reference INT0032WW2178H) describes the function and syntax for
each of the GDML and InterBase supported SQL clauses and statements. It also
lists the standard error messages for gpre.

Qi Guide (INT0032WW2178C) describes the use of qli, the InterBase query language
interpreter that allows you to read to and write from the database using interactive
GDML or SQL statements.

Qli Reference (INT0032WW2178B) describes the function and syntax for each of the
data definition, GDML, and SQL clauses and statements that you can use in qli.

Sample Programs (INT0032WW2178G) contains sample programs that show the use
of InterBase features.

Master Index (INT0032WW2179B) contains index entries for the entire InterBase Ver-
sion 3.0 documentation set.

In addition, platform-specific installation instructions are available for all supported
platforms.

xvii

xviii

Chapter 1
Introduction

This chapter introduces data definition with InterBase.

Overview

InterBase provides a number of tools for defining data:

¢ Gdef, the data definition compiler, gives you complete data definition capabilities.
You can use gdef to create:

The database itself

Global or local fields

Relations

Views that consist of fields from one or more relations
Indexes on relations and views

Security for databases, relations, views, and fields

Triggers to specify actions that InterBase performs automatically when you
store, modify, or erase a record

Introduction 11

Overview

* Qli, the InterBase query language, provides a subset of gdef’s capabilities. You
can use qli to define:

— The database itself

— Global and local fields

— Relations

— Views that consist of fields from one or more relations
— Indexes on relations and views

— Security for relations

* Embedded SQL and Dynamic SQL (DSQL) also provide a subset of gdef’s capa-
bilities. You can use embedded SQL statements to define:

— The database itself

— Local fields

— Relations

— Views that consist of fields from one or more relations
— Indexes on relations and views

— Security for relations

You can use DSQL statements to define all of the objects listed above, except for a
database.

* Dynamic DDL (DYN) gives you the ability to embed statements generated by gdef
into host-language programs. This lets you extend database definitions to support
new features and then send users a program that updates their databases in
place.

No matter which data definition tool you use, InterBase uses system relations to hold
the data definitions, or metadata. When you use gdef, qli, and dynamic DDL to define
and change metadata, the definitions and changes are automatically reflected in the
database at commit time. When you use SQL or DSQL to define and change metadata,
the definitions and changes are automatically reflected in the database after successful
compilation. Current metadata is available to every program. This gives you an inte-
grated active data dictionary of your metadata.

System relations are structured exactly like user relations, so you can use the program
interfaces qli, SQL, and GDML to perform the same operations on both data and data
definitions.

1-2 Introduction

The Advantages of Using Gdef

The Advantages of Using Gdef

Using gdef and its data definition statements is a quick, reliable way to define or mod-
ify metadata. Gdef’s data definition statements resemble data declarations from pro-
gramming languages such as C and Pascal. First, you create a file, called the source
file, that contains DDL statements. Then, you compile the source file with gdef. If gdef
compiles the source file without errors, it creates a database.

If you want to change an existing database in any way, such as adding a field to a rela-
tion or dropping a view, you can create a source file that contains gdef’s metadata mod-
ification statements and then compile it. You can also use gdef interactively to make
ad-hoc changes.

Whether you choose to use gdef or another metadata interface, you need to know what
metadata features and capabilities are available in InterBase. Therefore, you should
read this manual for a discussion of creating databases and defining fields, relations,
views, indexes, triggers, access control, user-defined functions, and event alerters.
Although all examples are in the form of gdef’s DDL statements, these chapters help
you write programs that deal with metadata. Chapter 12, Using Other Interfaces to
Define Data presents examples of using the program interfaces to define metadata.

Introduction 1-3

Minimal Database Definition

Minimal Database Definition

At a minimum, a database consists of relations and fields. For example, the following
DDL statements define a usable database, phones.gdb, that consists of a single relation
(PHONE_NUMBERS) with four fields:

define database "phones.gdb";

define relation phone_numbers
first_name char([10],
last_name char[20],
area_code char[3],
phone char[8];

These statements can be incorporated in a file, such as phone.gdl, and passed to gdef.
For example:

% gdef phone.gdl

The statements can also be typed interactively after you invoke gdef. For example:

% gdef

GDEF> define database 'phones.gdb’;
GDEF> define relation phone_numbers
CON> first_name char[10],

CON> last_name char[20],

CON> area_code char(3],

CON> phone char([8];

CON> <EOF>

GDEF'>

Use your system’s end-of-file character or type “exit” to terminate the definition.

In both this interactive and the preceding case, once gdef processes these data defini-
tions, you can store records in the PHONE_NUMBERS relation. For example:

QLI> ready phones.gdb
QLI> store phone_numbers
Enter FIRST_NAME: Ivan
Enter LAST_NAME: Pillow
Enter AREA_CODE: 617
Enter PHONE: 555-6600
QLI>

As your application grows and more people start using it, you will probably add more
relations to store related data, views to simplify data access, security classes to limit
access, and indexes to improve performance. You can add these as needed.

1-4 Introduction

For More Information

For More Information

For more information on data definition concepts and data definition through gdef and
dynamic DDL, continue reading this manual. If you need to look up the syntax of a par-
ticular DDL statement, refer to the DDL Reference.

For more information on other data definition tools provided by InterBase, refer to the
Qli Guide and the Programmer’s Guide.

Introduction 1-5

1-6

Chapter 2
Designing a Database

This chapter discusses some aspects of logical database design.

Overview

The basic principle of logical database design is to break large heterogenous groupings
of data into smaller pieces, so that each relation deals with closely related data.

The suggestions in this chapter are really guidelines. You must remove repeating items
and groups, if you want to follow the relational model. The other steps depend on your

application needs.

The design information presented in this chapter is based on the relational data model.

Designing a Database 2-1

Analyzing System Requirements

Analyzing System Requirements

The first step in designing a database is to study your company’s data requirements. A
basic systems analysis usually results in an understanding of:

e What the data items are
e What each data item is used for

¢ How each data item relates to the others

Once you have this information, you can begin to consider other factors, such as the
form of relations and the data model used by InterBase.

There are many methodologies you can use to conduct a systems analysis. For informa-
tion on these methodologies, refer to the many books on this subject.

2-2 Designing a Database

Assigning a Primary Key

Assigning a Primary Key

The second step in designing a database is to establish a primary key for each grouping
of data. A primary key is a data item that uniquely identifies a group of related data.
Sometimes you need more than one data item to uniquely identify a group of related
data. In this case, you would use a concatenated key as your primary key.

For example, consider an order system developed for a mail order business. The
predecessor to the InterBase version of this system relied on a very large flat file called
CUST_ORDER. This file contained a single record for each order. Each record
contained order information, customer data, and payment data. Each record also
contained repeating fields ITEM_NUMBER, ITEM_PRICE, ITEM_NAME, and
ITEM_QUANTITY) that described the items in the order:

CUST_ORDER record
ORDER_NUMBER
CUSTOMER_NUMBER
ENTRY_DATE
CUSTOMER_LAST NAME
CUSTOMER_FIRST_NAME
STREET_ADDRESS
CITY
STATE
ZIP
PHONE
ITEM_NUMBER
ITEM_PRICE
ITEM_NAME
ITEM_QUANTITY
AMOUNT_OF_ORDER
METHOD_OF_PAYMENT

For this grouping of data, you might make ORDER_NUMBER the primary key. It’s a
good idea to mark the data item or items that make up the primary key:

CUST_ORDER relation
*ORDER_NUMBER
CUSTOMER_NUMBER
ENTRY_DATE
CUSTOMER_LAST_NAME
CUSTOMER_FIRST NAME
STREET_ADDRESS
CITY
STATE
ZIP

Designing a Database 2-3

Assigning a Primary Key

PHONE

ITEM_NUMBER
ITEM_PRICE
ITEM_NAME
ITEM_QUANTITY
AMOUNT_OF_ORDER
METHOD_OF_PAYMENT

Later, when you define the database, you should define a unique index for each pri-
mary key. For more information on defining a unique index, refer to Chapter 6, Defin-

ing Views and Indexes.

2-4 Designing a Database

Normalizing Your Data

Normalizing Your Data

Once you have analyzed your system and assigned primary keys to your data group-
ings, you can begin to normalize your data. This process reduces data to its simplest
form and helps to prevent data anomalies, which can compromise the integrity of your
database.

Through normalization, you develop relations that consist of:

e A primary key

* Asetofdataitems whose values are determined solely by the value of the primary
key

Follow these steps to normalize your data:

¢ Eliminate repeating groups

* Remove partial-key dependencies

¢ Remove transitive dependencies

Eliminating Repeating Groups

The first step in the normalization process is to eliminate repeating groups. A repeating
group is a group of data items that contain more than one value for each occurrence of
the primary key.

For example, in the CUST_ORDER relation shown above, the data items that describe
an ordered item form a repeating group:

ITEM_NUMBER
ITEM_PRICE
ITEM_NAME
ITEM_QUANTITY

These items form a repeating group, because for each individual ORDER_NUMBER,
there may be many items ordered.

You eliminate repeating groups by moving the group into a new relation. You must
assign a primary key to the new relation. Usually, the primary key is a concatenated
key that includes the primary key of the source relation (in this case, CUST_ORDER)
and one or more data items in the target relation.

The example below shows how to eliminate the repeating group in the CUST_ORDER
relation:

CUST_ORDER relation
*ORDER_NUMBER

Designing a Database 2-5

Normalizing Your Data

CUSTOMER_NUMBER
ENTRY_DATE
CUSTOMER_LAST NAME
CUSTOMER_FIRST_NAME
STREET_ADDRESS
CITY

STATE

ZIP

PHONE
AMOUNT_OF_ORDER
METHOD_OF_PAYMENT

ORDER_ITEM relation
*ORDER_NUMBER
*ITEM_NUMBER

ITEM_PRICE
ITEM_NAME
ITEM_QUANTITY

Removing Partially Dependent Fields

The second step in the normalization process is to remove any fields that are logically
dependent on only part of a concatenated key. Such fields have a partial-key depen-
dency on the concatenated key field.

For example, the ORDER_ITEM relation above has a concatenated key composed of
ORDER_NUMBER and ITEM_NUMBER. Some fields in ORDER_ITEM are not
dependent on the combination of those fields. They are dependent only on the ITEM_-
NUMBER field. Once again, this division saves effort and space because item informa-
tion is stored in one place, rather than with every order.

The example below shows how to split item information from order information in the
ORDER_ITEM relation:

CUST_ORDER relation
*ORDER_NUMBER
CUSTOMER_NUMBER
ENTRY_DATE
CUSTOMER_LAST_NAME
CUSTOMER_FIRST_NAME
STREET_ADDRESS
CITY
STATE
ZI1P

2-6 Designing a Database

Normalizing Your Data

PHONE
AMOUNT_OF_ORDER
METHOD_OF_PAYMENT

ORDER_ITEM relation
*ORDER_NUMBER
*ITEM_NUMBER

ITEM_QUANTITY

CATALOG_ITEM relation
*ITEM_NUMBER
ITEM_NAME
ITEM_PRICE

Removing Transitively Dependent Fields

The third step in the normalization process is to remove any fields that are not logically
related to the key field. Such fields are said to have a transitive dependency on the key
field.

For example, many fields in the CUST_ORDER relation are not related to the
ORDER_NUMBER field. Instead, these fields are related to CUSTOMER_NUMBER.

In addition to being tidier and fitting with normalization theory, separating the cus-
tomer information from the order information saves you typing time and storage space
for each new order.

The example below shows how to split customer information from the CUST_ORDER
relation:

ORDER relation
*ORDER_NUMBER
CUSTOMER_NUMBER
ENTRY_DATE
AMOUNT_OF_ORDER
METHOD_OF_PAYMENT

CUSTOMER relation
*CUSTOMER_NUMBER
CUSTOMER_LAST_NAME
CUSTOMER_FIRST_NAME
STREET_ADDRESS
CITY
STATE

Designing a Database 2-7

Normalizing Your Data

Z1IP
PHONE

ORDER_ITEM relation
*ORDER_NUMBER
*TITEM_NUMBER

ITEM_QUANTITY

CATALOG_ITEM relation
*TITEM_NUMBER
ITEM_NAME
ITEM_PRICE

As you can see from the final versions of the relations, fields that uniquely identify one
relation can also appear in other relations. In the language of relational database man-

agement, a unique identifier such as ORDER_NUMBER is a primary key in the

ORDER relation, but a foreign key in ORDER_ITEM. Primary and foreign keys tie a
relational database together.

For example, the occurrence of the ORDER_NUMBER and CUSTOMER_NUMBER
fields in the ORDER relation, and the

CUSTOMER_ NUMBER field in the CUSTOMER relation lets you reconstitute the
previous version of the CUST_ORDER record from the new relations. You can do this
by using the relational join operation. For more information on the join operation, refer
to Chapter 6, Defining Views and Indexes.

2-8 Designing a Database

Developing a Prototype Design

Developing a Prototype Design

You should always plan to do numerous versions of your database design. Because your
goal is to produce a system that meets users’ needs, you need to work with the system’s
eventual users on each step of the database design process.

One strength of a database management system is that data independence preserves
the good parts of a prototype while you deal with unforeseen circumstances. A rela-
tional database management system is particularly adept at letting a database design
evolve.

Designing a Database 29

For More Information

For More Information

For more information about systems analysis and relational database design, see one
of the books available on these subjects.

2-10 Designing a Database

Chapter 3
Creating a Database

This chapter discusses how to create an InterBase database. First, it provides an over-
view of the networks for which InterBase is designed. Next, it tells you how to create
database files, how to define an InterBase database, how to extract metadata, and how
to handle gdef errors.

Overview

InterBase databases are designed for sharing data across networks and for multiple
database access. These topics are discussed on the following page.

Creating a Database 3-1

Overview

Sharing Data Across Networks

InterBase supports data sharing on both:

* Homogeneous networks, which consist of a single type of hardware. For example,
a homogeneous network may consist of DEC VAX or SunOS 3.5 workstations, but
not both.

e Heterogeneous networks, which consist of many types of hardware. Such a net-
work might include DEC, Sun, Apollo, and HP machines. These machines must be
connected either by TCP/IP or DECnet (DEC machines only).

This means you can keep your databases wherever they are needed in the network, but
still give users on other machines in the network complete access to data. For example,
you can store a design database on one machine, a specifications database on another,
and an engineering personnel database on yet another. You can read and write to each
of those databases from any node within the network.

Accessing Multiple Databases

Each InterBase data manipulation interface supports multiple-database access within
a single transaction. To guarantee the consistency of the databases during a multiple
database transaction updating data, InterBase supports a two-phase commit on the
transaction. This involves:

1. Checking each participating node to see if anything stands in the way of commit-
ting the transaction.

2. Making the database changes permanent when all partipating nodes check in.

The net result of these capabilities is that you can develop distributed applications that
share data among the machines you happen to be using.

For more information on InterBase transaction control, refer to the chapter on
InterBase transaction management in the Programmer’s Guide.

3-2 Creating a Database

Creating Database Files

Creating Database Files

You can store an InterBase database in a single file or in multiple files:

¢ Gdef creates single-file databases by default. Most databases, at least in their ear-
ly stages of development and prototyping, don’t exceed the storage capacity of a
single disk drive.

* Gdef also lets you specify a multiple-file database. You can specify a multiple-file
database when you first create the database, or when the database grows too large
for a single drive, A multiple file database can have its files distributed over sev-
eral disks.

In both cases, the database file or files contain both user data and the integrated data
dictionary. Instructions for creating single- and multiple-file databases are presented
below, followed by instructions for overriding the default database page size.

Creating a Single-File Database

The following statement directs gdef to create a single-file database with the specified
filename:

GDEF> define database "atlas.gdb";

You may want to specify a symbolic link (UNIX systems) or a logical name (VMS sys-
tems) rather than a filename, to gain added flexibility in database administration.

For example, the following statements specify a symbolic link for UNIX sytems and
define a database using that link:

% 1ln -s databases/atlas.gdb sample_db

GDEF> define database sample_db;
The following statement defines the database identified by the VMS logical name
atlas$database:

GDEF> define database "atlas$database";

Creating a Database 3-3

Creating Database Files

Creating a Database Remotely

You can create a database remotely in a network connected by DECnet, TCP/IP, or an

Apollo ring. For example, suppose you are on an Ultrix node and want to create a data-
base on a VMS node called HECTOR. The nodes are connected with DECnet. The fol-

lowing commands begin the creation of a database on HECTOR:

csh# gdef
GDEF> define database "hector::dual:[user.datalatlas.gdb";

The vertical arrow () represents other data definition statements that define relations,
fields, indexes, views, triggers, and access control. These subjects are discussed later
in this manual.

The form of the pathname to the remote node varies by operating system and type of
network:

¢ Between UNIX nodes connected by TCP/IP, the node name is followed by one colon
(:) and then the file specification on the remote node. For example:

"gustav:/usr/kathy/test/atlas.gdb"
¢ Between DECnet nodes, the node name is followed by two colons (::) and then the
file specification on the remote node. For example:

"hector::dual: [user.datalatlas.gdb"
"gustav::/usr/kathy/test/atlas.gdb"

¢ Between VMS and other nodes connected by TCP/IP, the node name is followed
by a caret (*) and then the file specification on the remote node. For example:

"apollo”/dev_1/kathy/test/atlas.gdb"

¢ Between Apollo nodes on the same token ring, the node name is preceded by two
slashes (/) and then followed by the file specification on the remote node. For ex-
ample:

"//pooch/dev_1/kathy/test/atlas.gdb"

* Between Apollo nodes connected by TCP/IP, the node name is followed by a colon
(:) and then the file specification on the remote node. For example:

"pooch:/dev_1/kathy/text/atlas.gdb"

3-4 Creating a Database

Creating Database Files

Tip for NFS Users

It’s best to create a database on the node where you want the database to reside. With
NFS, file structures on remote nodes appear to be local.

When you create a database, the database format matches the node where the file
physically resides. All access to the database takes place through that node, rather
than through nodes that have the database file mounted through NFS.

Creating a Multiple-File Database

A multiple-file database consists of a primary file and one or more secondary files.
InterBase uses the primary file as the first database file. When the pages on the pri-
mary file fill up, InterBase allocates a secondary file. Then when the pages on the sec-
ondary file fill up, InterBase allocates another secondary file. InterBase continues this
process until the file allocations run out.

You can use secondary files only for overflow purposes. You can’t specify what informa-
tion goes into each file, because InterBase handles this automatically.

You can either specify secondary files when the database is defined, or add them as
they become necessary.

Specifying Page Ranges and File Lengths

When you define a secondary file, you must declare a range of pages to be stored in that
file. You can do that by specifying either:

e Alength in pages for each file

. A starting page number for each secondary file

e A combination of length and starting page numbers

For example, the following statement creates a database that’s stored in four 10,000-
page long files:

define database "world_atlas.gdba"
file "world_atlas.gdbb" starting at page 10001
length 10000 pages
file "world_atlas.gdbc"
length 10000 pages
file "world_atlas.gdbd";

Creating a Database 3-5

Creating Database Files

You should be aware of the following considerations when you specify a file length:

* Ifyoudon’t declare a length for a file, you must declare a starting position for the
next file. In the preceding example, the primary file specification does not provide
a length. However, the first secondary file lists a starting position.

* Ifyou declare a length that’s inconsistent with the starting page number, gdef
chooses the value that makes the first file longer.

For example, suppose the preceding example took this form, in which the primary
file is 10,000 pages long, but the first secondary file starts at page 5000:

define database "world_atlas.gdba" length 10000
file "world_atlas.gdbb" starting at page 5000
length 10000 pages
file "world_atlas.gdbc"
length 10000 pages
file "world_atlas.gdbd";

Gdef makes the primary file 10,000 pages long and starts the first secondary file
at page 10,001.

* Ifyou choose to describe page ranges in terms of length, you must list the files in
the order in which they should be filled. In the example above, the files are filled
in the order world_atlas.gdba, world_atlas.gdbb, world_atlas.gdbc, and world_at-
las.gdbd.

Specifying Additional Files

InterBase extends a multiple file database as follows:

¢ It checks that the page it’s about to create is in the page range defined for the file
to which it’s adding. If not, it opens the next file.

¢ Ifadatabase file is full and no other file is specified, InterBase extends the last
file beyond the limit you specify, until the disk space runs out:

— On Apollo and UNIX systems, InterBase extends the file one page at a time.

— On VMS sytems, InterBase first doubles the file size up to 16,000 bytes. Then
it extends the file 16,000 bytes at a time.

Therefore, to avoid overfilling the device that holds the last database file, be sure you
specify enough secondary files. You specify these files by using the modify database
statement, as described in the DDL Reference.

In most cases, you will probably want to put secondary files on separate disks. How-
ever, you must ensure that all files in a database can be accessed directly by one pro-

gram:

3-6 Creating a Database

Creating Database Files

* On Apollo systems, all database files must be in the same ring.

* On UNIX systems all database files must be in the same file system, and can’t in-
clude disks that are NFS mounts.

e On VMS systems, all database files must be on disks mounted by the same host or
cluster-wide devices available to that host.

Overriding the Default Page Size

When you create a database, you can override the default page size of 1024 bytes. You
can specify a page size of 1024, 2048, 4096, or 8192 bytes. InterBase rounds other page
sizes up to the nearest increment with a warning. It returns an error for sizes above
8192.

Consider using a larger page size when:

* You have an indexed relation that has a large number of record occurrences. The
advantage of a large page size is that it allows a more shallow tree structure in the
index. Each index bucket is one page long, so longer pages mean larger buckets
and fewer levels in the hierarchy.

For example, if you have more than 50,000 records in an indexed relation, you
should try a page size of 2048 bytes, rather than the default of 1024 bytes.

* Youhave many large records that contain non-repetitive data. InterBase performs
better if each record fits on a page. Large records that contain non-repetitive data
do not compress as compactly as others. Thus, they take up more space, and may
not fit on a single 1024 byte page.

* You have large blob fields. Blob storage and retrieval is most efficient when the
entire blob fits on a single page. If an application typically stores blobs between
1K and 2K, a page size of 2048 bytes is preferable to one of 1024 bytes.

To change a page size on an existing database, you must use gbak, rather than gdef.
For more information on changing a page size, see the reference chapter in Database
Operations.

Creating a Shadow File

A shadow file is a physical copy of a database that resides on a disk. Once enabled, the
shadow file maintains a duplicate copy of the database. This copy is always in sync with
the database. You use a shadow file to recover from hardware failures.

You create a shadow file by using the define shadow command in gdef. You can
define either a single shadow file or a set of shadow files:

Creating a Database 3-7

Creating Database Files

* To define a single shadow file, specify a shadow set number and a pathname for
the shadow file. For example:

define shadow 1 auto ’atlas_shadow’;
¢ To define a shadow set, specify a shadow set number, a pathname for the shadow

files, and either a file length or a starting page number for each of the secondary
files. For example, to define a shadow set consisting of 3 files, type:

define shadow 1 auto ‘atlas.shadow’ starting at page 0
file ’'atlas.shadowl’starting at page 100
file ’'atlas.shadow2’ starting at page 200;

As an alternative, type:

define shadow 2 auto ’atlas.shadow’ length 100
file 'atlas.shadowl’ length 100
file ’'atlas.shadow2’ length 100;

For more information on shadow files, refer to the chapter on disk shadowing in the
Database Operations guide.

3-8 Creating a Database

Defining a Database

Defining a Database

You define a database by compiling data definition (DDL) statements with gdef. When
you define a database, InterBase creates a file for the database and populates it with
system relations. These relations describe the structures of both internal data and user
data.

The first statement you pass to gdef determines whether it creates or modifies a data-
base.

e Ifthe first statement passed is define database, gdef creates a file with the
name specified in this statement. InterBase populates that file with system rela-
tions as determined by the DDL statements that follow the define database
statement.

In the case of multiple-file databases, gdef creates files with the names and char-
acteristics specified in the define database statement for each secondary file.

e Ifthe first statement passed is modify database, gdef modifies the specified da-
tabase file as determined by the DDL statements that follow the modify data-
base statement.

Supported DDL operations are listed below, followed by a discussion of gdef syntax
and instructions for entering DDL Statements.

Supported DDL Operations

You can use gdef to:

e Define a database, field, relation, view, index, trigger, user-defined function, blob
filter, and shadow file

¢ Modify a database, field, relation, view, index, trigger, user-defined function, blob
filter, and shadow file definition

e Delete a database, field, relation, view, index, trigger, user-defined function, blob
filter, and shadow file definition

e Add a field to an existing relation
e Secure your data

A subset of gdef syntax follows. This syntax is described in detail in the DDL Refer-
ence.

Creating a Database ‘ 3-9

Defining a Database

Operating System Syntax

Apollo AEGIS gdef [-r] [-z] [-p integer] [filespec]

UNIX gdef [-r] [-z] [-p integer] [filespec]

VMS gdef [/replace] [/z] [/page_size integer] [filespec]

Entering DDL Statements

You can either include DDL statements in a source file or input them interactively:

To input DDL statements from a source file, you must provide its file specification.
When you do this:

— Gdef'looks for the specified file.
— Ifit can’t find the file, gdeflooks for the specified file with an extension of gdl.
— Ifit can’t find that file, gdef fails.

If you type gdef followed by a carriage return, gdef accepts input directly from
your keyboard. Terminate input with the standard end-of-file character, the quit
statement, or the exit statement.

The rules and conventions you use to enter DDL statements are described below, fol-
lowed by instructions for entering DDL statements from a file and entering DDL state-
ments interactively.

DDL Input Rules and Conventions

You should be aware of the following rules when you enter DDL statements:

Punctuation in the source file or interactive input is limited to:

— Commas (,) to delimit items in a list

— Semicolons (;) to terminate statements

— Double and single quotes (“ and ‘) for file specifications and literal values

You can either define fields before you include them in relations, or you can define
them when you define a relation. If you want to reference a field in a define re-
lation statement, that field must precede any other define relation statement
that references the field.

You must define a relation before you define indexes for it.
You must define source relations before you define views that reference them.

You must define relations before you define triggers that affect or reference them.

Creating a Database

Defining a Database

Both source and interactive input are position-independent. You can start or break a
statement anywhere, except in the middle of a lexical unit. Lexical units are things
such as file specifications or words.

For example, gdef has no problem processing the following statement:
detine
field

item_number
char[5];

However, this statement does not work, because it breaks a statement in the middle of
a lexical unit:

define fie
14
item_number
char([5];

Entering DDL Definitions from a File

You can use any text editor to create a file that can be input to gdef. For informational
purposes, you should use the extension gd! to specify a gdef file. If you are creating a
database, include data definition statements that describe the new database structure.

For example, the following statements in file emp.gdl define a database that maintains
information about employees:

define database "emp.gdb"
page_size 1024
{holds employee information};

/* Global Field Definitions */

define field BADGE long;

define field BIRTH_DATE date;

define field DEPARTMENT char [3];
define field FIRST_NAME varying [10];
define field LAST_NAME varying [20];

/* Relation Definitions */

define relation BADGE_NUM
BADGE position 0;

define relation DEPARTMENTS
DEPARTMENT position O,

Creating a Database 3-11

Defining a Database

MANAGER based on BADGE position 1;

define relation EMPLOYEES
BADGE position 0,
BIRTH_DATE position 0,
FIRST_NAME position 1,
LAST_NAME position 2,
SUPERVISOR based on BADGE position 3,
DEPARTMENT position 4;

When you are finished with the data definition statements:

3. Exit from the editor.

4. Invoke gdef, giving it the name of the data definition file as an argument:
% gdef emp.gdl

Gdef reads the source file and builds the system relations. Once the source file is com-
piled, the database is ready for program access. If gdef encounters any errors while
compiling the source file, it reports the errors and does not create the database.

Entering DDL Definitions Interactively

If you plan to define only a few entities, you may choose to enter your definitions inter-
actively. When you do this, be sure to end your input with either the end-of-file char-
acter for your system, the quit command, or the exit command.

The following lines show how to enter definitions interactively:

% gdef

GDEF> define database "emp.gdb"

CON> page_size 1024

CON> {holds employee information};

GDEF> define field BADGE long;

GDEF> define field BIRTH_DATE date;

GDEF> define field DEPARTMENT char [3];
U

GDEF> quit

%

Gdef reads your input and compiles a list of changes. Once gdef has compiled the
input, the database is ready for program access.

3-12 Creating a Database

Defining a Database

If gdef encounters any syntactic or semantic errors on input, it reports an error. Then,
at the end of your input, gdef tells you there were errors and asks if you want to con-
tinue:

¢ Ifyou answer y, gdef ignores the erroneous actions, creates or modifies the data-
base, and updates the system relations.

e Ifyou answer n, gdef does not process your input.

For example:

% gdef

GDEF> modify database emp.gdb

standard input:1l: expected quoted string, encountered "emp"
GDEF> modify database "emp.gdb";

GDEF> modify field dept varying [3];

standard input:2: expected global field name, encountered "dept"
GDEF> modify field department varying [12];

GDEF> quit

2 errors during input. Do you want to continue? y

Using gdef interactively is a quick way to define and update metadata. This method is
especially useful for tuning your database design.

On the other hand, if you make an error when you use this method, you must retype
the whole statement. You also don’t have a log of the changes you've made to the data-
base. Because of this limitation, using interactive gdef is not the best way to define a
new database or to make a lot of changes.

Creating a Database 3-13

Extracting Metadata

Extracting Metadata

Gdef provides an option that causes it to create a file of data definition statements
from an existing database. The extract option is useful if you want to see the current
metadata for a database that has been greatly modified since it was created.

The following command extracts the metadata from the atlas database to a file called
atlas.gdl:

Operating System Command

Apollo AEGIS gdef -e atlas.gdb atlas.gdl
UNIX gdef -e atlas.gdb atlas.gdl
VMS gdef /extract atlas.gdb atlas.gdl

If you omit the output filespec, gdef writes the file definition to your current window
or terminal.

3-14 Creating a Database

Maintaining the Database

Maintaining the Database

InterBase provides several database maintenance utilities, which are described in
detail in Database Operations.

Foremost among the utilities is gbak, the backup and restore utility. You should back
up your databases on a regular basis, using either gbak or the host system backup util-
ity. That way, if your disk drive ever crashes, your work is protected up to the last
backup. In any case, if you ever lose your database and you have a backup copy, restore
the database from the backup version.

Note

If you use multiple-file databases, you must back up, restore,
protect, and copy all the files at once to maintain database
consistency.

You gain many advantages by using gbak to back up your databases. Gbak can:

¢ Produce a backup that can be restored on any of the supported operating systems,
if an appropriate network connection exists. For example, you can use gbak to
back up a database from a Sun workstation and restore that database to an Apollo
workstation.

e Change the database structure, including its page size and file distribution.

e Make unused space in the database available. InterBase automatically reclaims
unused space when records are deleted, if the pages containing the deleted records
are read. When you use gbak to back up your database, gbak makes space avail-
able, because it directs InterBase to read all database records.

You can also use the gfix utility to maintain database performance. The sweep option
on gfix:

e Makes unused space in the database available

¢ Reduces the amount of time a transaction spends starting up

The file-like aspect of the database allows you to use operating system file copy and

delete commands. Therefore, you can do things like copy a database to a scratch file
when you test code that might destroy production data.

All users of the database need both read and write access to the database files. How-
ever, we recommend that you use host operating system file protection to prevent the
accidental or malicious deletion of database files.

Creating a Database 3-15

Handling Gdef Errors

Handling Gdef Errors

Gdef reports errors in this format:

filename:integer: message

The integer is the line number on which gdef found an error. The message explains the
gdef problem.

For example, the following gdef session results in an error being reported for line 1:

% gdef

GDEF> modify database "carberry.gdb";

I/0 error during "ms_S$mapl" operation for file "carberry.gdb"
-name not found (0OS/naming server)

standard input:1: Couldn’t attach database

GDEF>

An error might come from any of three sources:

* Gdef itself. These are generally errors that gdef encounters when parsing a com-
mand such as an unrecognized word or invalid syntax.

* A database error. Database errors can indicate any one of a number of problems.
The most likely are the nonexistence of the database specified or privileges that
deny you write access. Check the filename or pathname and try again. The exam-
ple shown above is a database error.

* Abugcheck. Bugchecks reflect software problems that you should report. If you
encounter a bugcheck, you should save the error message. Then, submit the error
message and the script that led to the bugcheck along with a copy of the database
to:

Interbase Software Corporation
Customer Support Group

209 Burlington Road

Bedford, MA 01730 USA

If you encounter an error and can’t decide why there was an error, review the entry for
that statement before submitting the bug report.

Most of the messages you receive with gdef are self-explanatory. For example, you may
reference an object that does not exist, perform some data modification that is not legal,
and so on.

For a complete list of gdef error messages and their explanations, refer to the DDL Ref-
erence.

3-16 Creating a Database

For More Information

For More Information

For more information on your host operating system’s file system and treatment of net-
works, see the documentation for your operating system.

For more information on creating a database and defining its entities, refer to the
remainder of this document and to the following entries in the DDL Reference:
e define database

¢ define field

¢ define filter

¢ define function

* define relation

¢ define view

¢ define index

¢ define security_class

e define trigger

Creating a Database 3-17

3-18

Chapter 4
Defining Fields

This chapter discusses how to define fields and describes how and when to use the var-
ious field attributes.

Overview

A general discussion of the methods you use to define fields and the characteristics of
the attributes you can include is presented below.

Methods for Defining Fields

There are two ways to define fields in gdef:

e With a define field statement. When you define fields this way, you include them
in relations simply by referencing the field names in subsequent define relation
or modify relation statements.

¢ With a define or modify relation statement.

Defining Fields 4-1

Overview

No matter which method you use, InterBase stores the field definition as a global def-
inition. This definition is available to any number of relations.

For example, the following statements provide global field definitions that you can use
in several relations:

define field state char([2];

define relation populations
population long;

Global field definitions provide many advantages because they:

Point out natural join paths for high-level programs. For example, the STATE
field occurs in six relations in the atlas database. To display 1950 census data for
a state along with other information about that state, you can join the STATES
and POPULATIONS relations. You would join these relations by using the
STATE field as the join field.

Reduce or eliminate divergence among related field definitions. For example, you
can eliminate divergence among the six STATE field definitions when you use the
global STATE field definition.

Reduce the effort and the error factor involved in changing field types. For exam-
ple, if you decide to use a three-letter code for states instead of a two-letter code,
you can simultaneously change all relations that use the code by changing the glo-
bal field STATE.

Field Attributes

There are three types of attributes you can use to describe a field:

Global attributes that can’t be overriden locally. These include the three core at-
tributes:

— Datatype

— Missing value, which specifies a value that gets returned when a field has no
assigned value

— Valid if, which specifies validation criteria for a field

You can define these attributes by using either the define field statement or the
define relation statement. But you can change them only by using the modify
field statement.

The datatype, missing value, and valid if attributes are stored in the
RDBS$FIELDS system relation.

Global attributes that can be overriden locally. These include the three qli-
related attributes:

Defining Fields

Overview

— Edit string, which specifies a qli display format for a field or computed value
— Query header, which specifies a column header for a qli display
— Query name, which specifies an alternate field name for use in gli

You can define these attributes by using either the define field statement or the
define or modify relation statement. You can override them for an individual
relation by using a define or modify relation statement.

The edit string, query header, and query name attributes are stored in both the
RDBS$FIELDS system relation and the RDBSRELATION_FIELDS system rela-
tion.

* Alocal attribute, security class, that you can define for an individual relation us-
ing the define or modify relation statement.

The security class attribute is stored in the RDB$RELATION_FIELDS system re-
lation.

Regardless of how you define a field, the only required attributes are its datatype and,
if appropriate, its length.

Defining Fields 4-3

Specifying a Datatype

Specifying a Datatype

InterBase supports the following datatypes:
e Binary (integer)

¢ Float

e Character
* Date

e Blob

e Multi-dimensional array

If your language does not support a particular datatype, InterBase automatically con-
verts the data to an equivalent datatype that can be used in your language. For a list
of InterBase datatypes and the name of the corresponding datatype in each of the sup-
ported languages, refer to the define field entry in the DDL Reference.

The range, precision, uses, and restrictions for each of these datatypes are described
below.

Specifying Binary Datatypes

InterBase supports two binary datatypes, each of which has an optional scale factor:
e Short (word) has a range of -32768 to 32767.
* Long (longword) has a range of -2¥*31 to (2¥*31)-1.

You can perform the following operations on the binary datatypes:

¢ Comparisons. The standard relational operators determine which of two integers
is greater, lesser, and so on. Other operators perform string comparisons such as
containing, starting with, and matching on numeric fields.

* Arithmetic operations. The standard arithmetic operators determine the sum, dif-
ference, product, or dividend of two or more integers.

* Conversions. InterBase automatically converts data between binary, float, and
string datatypes. For operations that involve comparisons of numeric data with
other datatypes, such as string, InterBase first converts the string data to a nu-
meric datatype and then compares them numerically.

e Sorts.

You also have the option of specifying a scale factor for use with the binary datatypes
in qli, COBOL programs, and PL/I programs. The scale factor is the degree of precision
with which InterBase stores data. It is based on a power of 10.

4-4 Defining Fields

Specifying a Datatype

For example, suppose you specify a scale factor of two for a field. This indicates that
the degree of precision is in the hundreds. If you then ask qli to store the value 167 in
that field, qli will store the value as 1.

Now, suppose you specify a scale factor of negative two for a field. This indicates that
the degree of precision is in the hundredths. If you then ask qli to store the value 167
in that field, gli will store the value as 167.00.

A simple guide to how InterBase stores data based on scale factors is presented below:

¢ For positive scale factors, InterBase divides the input value by 10 to the power in-
dicated by the scale factor. Therefore, using the first example presented above, In-
terBase divides 167 by 100, yielding the value 1.67. Then, InterBase strips off the
fractional digits, yielding the value 1.

* For negative scale factors, InterBase also divides the input value by 10 to the pow-
er indicated by the scale factor. Using the second example above, InterBase di-
vides 167 by -100, yielding the value 16700. Then InterBase inserts a decimal
point in front of the resulting zeroes, yielding 167.00.

For example, consider the following field definitions in a relation:

define database "scale_factor.gdb";
define relation scale_factor

fl1 long,

f2 long scale 1,

f3 long scale 2,

f4 long scale -1,

f5 long scale -2;

The same values were entered for each of the five fields in a record. The input value (no
scale factor) is in field F1. The values stored in the database are shown below:

Fl F2 F3 F4 F5
(input value) (scale 1) (scale 2) (scale -1) (scale -2)
1 0 0 10 100
16 1 0 160 1600
167 16 1 1670 16700
1679 167 16 16790 167900
16791 1679 167 167910 1679100

Because qli, COBOL, and PL/I support the scale factor, they convert the stored values
to their original precision when they retrieve data from the SCALE_FACTOR relation.
The following qli query prints records from this relation:

Defining Fields 4-5

Specifying a Datatype

QLI> ready scale_factor.gdb
QLI> print scale_factor

Fl F2 F3 F4 F5

(input value) (scale 1) (scale 2) (scale -1) (scale -2)
1 0 0 1.0 1.00
16 10 0 16.0 16.00
167 160 100 167.0 167.00
1679 1670 1600 1679.0 1679.00
16791 16790 16700 16791.0 16791.00
QLI>

In comparison, there may be some confusion if you retrieve this data by using programs
that don’t support the scale factor. For example, consider the following C program that
reads records from the SCALE_FACTOR relation:

database db = filename "scalefactor.gdb";

{
ready;
start_transaction;
for sf in scale_factor
printf ("%d %d %d %d %d \n", sf.fl, sf.f2, sf.f3, sf.f4,

sf.f5));
end_for;
commit ;
finish;
}
This program produces the following output:
Fl F2 F3 F4 F5
(input value) (scale 1) (scale 2) (scale -1) (scale -2)
1 0 0 10 100
16 1 0 160 1600
167 16 1 1670 16700

4-6 Defining Fields

Specifying a Datatype

1679 167 16 16790 167900
16791 1679 167 167910 1679100

As you can see, the non-scaled F1 is identical for C and gqli. However, the other fields
displayed by C disregard scale factors and retrieve the data as stored.

Specifying Floating Datatypes

InterBase supports two floating datatypes:

* Float, a single precision 32-bit datatype with a precision of approximately 7 deci-
mal digits

¢ Double, a double precision 64-bit datatype with a precision of approximately 15
decimal digits

The following statements define fields for floating data:
define field salary float;
define field flap_tolerance double;
define field rootbeer float;
You can perform the following operations on the floating datatypes:

¢ Comparisons. The standard relational operators determine which of two numbers
is greater, lesser, and so on. Other operators perform string comparisons such as
containing, starting with, and matching on the integer portion of floating data.

¢ Arithmetic operations. The standard arithmetic operators determine the sum, dif-
ference, product, or dividend of two or more numbers.

¢ Conversions. InterBase automatically converts data between binary, float, and
string datatypes. For operations that involve comparisons of floating data with
other datatypes, such as string and binary, InterBase first converts the data to a
numeric datatype and then compares them numerically.

e Sorts.

Specifying String Datatypes

InterBase supports two string datatypes:

e Text or character, which has a range of 1 to 32767 characters

* Varying, which has a range of 1 to 32767 characters

InterBase compresses trailing spaces when it stores text fields. Therefore, a text field

that has trailing blanks takes up the same amount of space as an equivalent field
defined as varying.

Defining Fields 4-7

Specifying a Datatype

Varying datatypes are only supported in C. For other languages, InterBase converts
varying fields to text. InterBase does this by adding spaces to the value in the varying
field until the field reaches its maximum length.

The following statements define fields with fixed and varying length data. The brack-
eted number that follows the field name specifies the maximum length of the field:

define field province varying [4];
define field province_name varying [25];
define field capital varying [25];
define field state char [2];

define field zip char [5];

define field name varying [20]

define field type char [1];

define field city varying [25];

define field state char [2];

define field zip char [5];

You can perform the following operations on the string datatypes:

Comparisons. The standard relational operators determine which of two strings is
greater, lesser, and so on. Other operators perform string comparisons such as
containing, starting with, and matching.

InterBase uses the ASCII collating sequence for the comparison, thus sorting up-
percase before lowercase characters. Therefore, “QUEBEC” sorts before “Quebec,”
“Quebec” before “quebec,” and “ZAPHOD” before “aardvark.”

Limited arithmetic operations. If you try an arithmetic operation on a text field,
InterBase first converts the text to a number. This conversion is successful if the
text field contains only numeric literals; that is, numbers that are stored as text.
For example, the fields that make up the degrees and minutes of latitude and lon-
gitude in the CITIES relation are stored as char.

When converting numeric literals to numbers, InterBase reads a period (.) as a
decimal point. The input value “943.53” is interpreted as the decimal number
“nine hundred forty-three and fifty-three hundreths.”

If the text field contains non-numeric characters other than leading or trailing
spaces, or more than a single period, the data conversion fails and the statement
containing the arithmetic operation is not executed.

Conversions. InterBase converts string data to and from all other datatypes ex-
cept blobs.

Sorts. The sort is case-sensitive.

Defining Fields

Specifying a Datatype

Specifying a Date Datatype

Most languages do not support the date datatype. Instead they express dates as strings
or structures.

InterBase supports a date datatype that is stored as two longwords. The following
statements define date fields:

define field standard_date date;
define field ship_date date;
define field halley_comet date;

There are two ways to use the date datatype in an InterBase program:

* Youcan use the gds_$encode_date and gds_$decode_date routines to convert
the date datatype to the UNIX time structure, tm. This is an array of 32-bit words
that represents the second, minute, hour, day, month, year, day of week, day in
year, and state of daylight savings time.

* You can convert the date datatype to a character string by using gpre’s casting
capability.

For a detailed description of date conversion methods, see the chapter on using date
fields in the Programmer’s Guide.

You can perform the following operations on the date datatype:

* Comparisons. The standard relational operators determine which of two dates is
greater, lesser, and so on. Other operators perform string comparisons such as
containing, starting with, and matching on date fields.

e Arithmetic operations. You can subtract one date from another. The result is a
floating point number that represents the difference in days and fractions of days.
You can also add a number to a date, which yields the date plus that number of
days. To find an earlier date, you can add a negative number to a date; for exam-
ple, "today” + (-4).

e (Conversions. InterBase converts from date to text and from text to date.

e Sorts.

The range of the date datatype is 1 January 100 to 11 December 5941. If you require
dates in the seventh millenium, you should use another datatype. The missing value
for date fields is 17 November 1858.

Defining Fields 4-9

Specifying a Datatype

Specifying a Blob Datatype

InterBase supports a datatype called a basic large object or blob. A blob looks like a
stream or sequential file, but behaves much like a field in a relation. Blobs can hold
text, graphics, images, digitized voice, or any other large unstructured data.

Blobs have the following features:

¢ They are under full transaction and concurrency control.

e They are stored in discrete chunks called segments. InterBase provides special
calls through GDML and qli that let you retrieve and edit individual blob seg-
ments.

¢ You can group the same kinds of blob fields together by subtype. Then you can
write blob filters that convert the data from one subtype to another.

Instructions for defining blob segment lengths and subtypes, and for using blob filters
are presented below.
Note

You can’t index the contents of a blob field or access blob data
through SQL statements. You can, however, use blob library rou-
tines from an SQL program. These routines are described in the
chapter on using blobs in the Programmer’s Guide.

Defining Blob Segment Lengths

When you define a blob, you can specify a segment length. Gpre and gli use the seg-
ment length to set up a buffer for data transfer between the calling program and Inter-
Base. The segment length you specify does no¢ limit the size of the blob or the size of
an individual segment.

If you don’t specify a segment length, gpre and gli make the following assumptions:
* Gpre assumes a segment length of 80 bytes.

* QIli assumes a segment length of 80 bytes.

The following statement defines a blob field and sets a length for each segment:

define field blurb blob sub_type text
segment_length 60;

Defining Blob Subtypes

When you define a blob, you can specify a subtype that describes the blob data. For
example, you can specify one subtype that holds marked-up text and a second subtype

4-10 Defining Fields

Specifying a Datatype

that holds the output of the text processor. Later on, you can write a blob filter that
converts the marked-up text to readable output.

You can use blob subtypes and blob filters to do a large variety of processing. Some
other ideas are to:

* Define one blob subtype to hold compressed data and another to hold decom-
pressed data. Then write blob filters that expand and compress blob data.

* Define one blob subtype to hold generic code and other blob subtypes to hold sys-
tem-specific code. Then write blob filters that add the necessary system-specific
variations to the generic code.

* Define one blob subtype to hold word processor input and another to hold word
processor output. Then write a blob filter that invokes the word processor.

There are two categories of subtypes you can use:
* Predefined subtypes that InterBase uses internally
* Subtypes that you define as needed

Instructions for using each category of subtypes are presented below.
Using Predefined Subtypes

Table 4-1 shows the predefined subtypes that InterBase uses for internal processing.
You can use subtypes 0 and 1 if they are appropriate. The others are for InterBase use
only.

Table 4-1. Predefined Blob Subtypes

Blob Associated What It Represents

Subtype Name

0 An unspecified subtype.

1 text ASCII text.

2 blr BLR data. This subtype automatically gets con-
verted to text.

3 acl InterBase access control lists. This subtype auto-
matically gets converted to text.

4 ‘Reserved for future use.

5 An encoded description of the current metadata

for a relation.

Defining Fields 4-11

Specifying a Datatype

Table 4-1. Predefined Blob Subtypes continued

Blob Associated What It Represents
Subtype Name

6 A description of a multidatabase transaction that
finished irregularly. This description includes the
transaction’s id, host site, database site, and
remote site.

For example, the following statement uses gdef to define a field that has a predefined
subtype of text:

define field regular_text blob sub_type text
segment_length 60;
Defining Your Own Subtypes

Unless you use the predefined subtypes 0 or 1 shown in Table 4-1, you should always
specify a subtype by using a negative integer. The integer can have a value from -32768
to -1.

By using a negative integer for user-defined subtypes, you avoid conflicts between your
subtypes and the subtypes defined by InterBase.

The following statement defines a blob field that has a subtype of -2. This field contains
text-processor output:

define field nroff_text blob
sub_type -2;

Using Blob Filters

You can use blob filters to convert data from one blob subtype to another. You can
access blob filters from any host-language program that contains GDML statements.

Qli automatically uses a blob filter to filter a blob defined with no subtype to text, when
asked to display the blob. It also automatically filters blobs defined with subtypes to
text, if the appropriate filters have been defined.

To use blob filters, follow these steps:

1. Define the filters to the database.

Write the filters and compile them into object code.

Create a shared filter library.

-~ LN

Make the filter library available to InterBase at runtime.

4-12 Defining Fields

Specifying a Datatype

5. Write an application that requests filtering.

These steps are described in the chapter on using blob fields in the Programmer’s
Guide.

Specifying a Multi-Dimensional Array Datatype

InterBase supports an array datatype that lets you store and retrieve data either as a
complete table or a single cell in a table.

You use an array when all three of these conditions exist:

* The data elements naturally form a set. (Individual elements are significant only
in the context of the other elements and are all of one datatype.)

* You want to represent and control the entire set of data elements as a single da-
tabase field.

* You want the capability to identify and access each element individually.

Storing data elements in an array is an alternative to lumping them together in a blob,
where they can’t be distinguished. It’s also an alternative to spreading them out over
many fields, where they lose their cohesiveness, are more difficult to maintain as a set,
and consume more system resources in overhead than an array.

You can specify up to 16 dimensions for an array and can assign the array one of the
following datatypes:

* Short

e Long

* Float

* Double
¢ Char

* Varying
¢ Date

The array dimensions must be in the range between -32768 and +32768. If you specify
only one boundary for the array, the value of the other boundary defaults to one.

The following statement defines an array that stores data in double format:
define field arrayl double (20, 1:15, -1:40):

This array has three dimensions that have the following ranges:
¢ The first dimension has a range from 1 to 20.
e The second dimension has a range from 1 to 15.

Defining Fields 4-13

Specifying a Datatype

¢ The third dimension has a range from -1 to 40.

The following statement defines an array that stores data in text format:
define field array2 char[9] (50);

This array has one dimension that can hold 50 pieces of data. Each piece of data is char

[9].

Array Considerations

You should be aware of the following considerations when you define an array:

e Host languages vary in the ranges they accept. Be sure to define ranges that ac-
commodate all languages that reference the array.

e You can access an array by using embedded GDML statements. You can’t access
an array by using embedded SQL statements or qli.

For a detailed discussion of using arrays, refer to the chapter on using array fields in
the Programmer’s Guide.

4-14 Defining Fields

Defining Field Validation Rules

Defining Field Validation Rules

InterBase supports field-level data validation. You can use a boolean expression to
restrict the legitimate values for a field.

The following statements define fields with validation expressions, the first stating
that prices cannot be negative or zero and the second noting that the listed strings are

the only valid ones:

define field price long
valid if (price > 0);

define field standard_flag char([1]
valid if (
standard_flag = "Y" or
standard_flag = "N");

Because the validation check can involve any Boolean expression, you can check for
equality, inequality, substrings, or ranges of values. You can also check the values of

other fields.

For example, the following two fields with interlocking validation might be useful if you
add a COUNTRIES relation to the atlas database. (Assume that this relation contains

both fields):

define field type varying [15]
valid if (type = 'CAPITALIST’, 'SOCIALIST’, ‘UNDEVELOPED’ or
type missing) ;
define field sub_type varying [15]

valid if (
type = ‘CAPITALIST’ and
sub_type = 'LAISSEZFAIRE’, ‘'DEVELOPMENTAL’ or
type = ‘SOCIALIST’ and
sub_type = ‘MARXIST’, 'TROTSKYITE',

"MAOIST’, 'ILL-DEFINED’ or
sub_type missing) ;

Because validation criteria are stored in the database, they eliminate checks in the pro-
grams that access the database. InterBase always checks validation expressions when
it updates the affected fields.

For more information on data integrity, see Chapter 7, Preserving Data Integrity.

Defining Fields 4-15

Representing Missing Values

Representing Missing Values

InterBase lets any field have a missing value. Rather than storing a value for the field,
InterBase sets an internal flag indicating the field has no assigned value. You have
the option of declaring an explicit value that InterBase returns if the field value is
missing.

For example, consider the PRICE and STANDARD_FLAG fields:

define field price long
valid if (
price > 0 or
price missing
missing_value is -101;

define field standard_flag char[1]

valid if (
standard_flag = "Y" or
standard_flag = "N" or
standard_flag = "?" or

standard_flag missing)
missing_value is "?2";

These definitions include validation checks that limit acceptable values to the specified
values or missing. Both definitions also specify an explicit missing value.

Due to the validation check for PRICE, if someone tries to store a price that is less than
or equal to zero, InterBase returns a validation error for the field PRICE and does not
store the record in which it is contained, unless the value is exactly -101.

You can enter “Y”, “N”, or “?” as values for the STANDARD_FLAG field. Records stored
with the value “?” can be found using a Boolean test such as with standard_flag miss-
ing. Even though you stored a question mark and can retrieve a question mark, the

Boolean expression with standard_flag = “?” does not retrieve the records. Should you

change the missing value to “N”, records that you stored with a question mark will
return “N” as the value of STANDARD_FLAG.

The following considerations apply to storing records with explicit missing values. The
missing value must:

* Be allowed by a valid_if clause. If it is not allowed by this clause, qli returns a
validation error.

* Meet the datatype specification of the field.

For more information on how the various interfaces handle missing values, see the
manual for the interface you are using.

4-16 Defining Fields

Including Comments

Including Comments

The comments clause lets you store comments about the field in a database. A com-
ment can include any of the printable ASCII characters. When you define comments,
you use the left bracket ({) and right bracket (}) as delimiters.

The following statements define fields with comments:
define field standard_date date { all-purpose date field };

define relation parts
item_code char[6] { alphanumeric identifier 1},
item_name char([25] { abbreviated product name },
manufacturer char([10] { aka supplier 1},
blurb blob segment_length 60
{ this field stores the
descriptions of the
items in inventory 1},
price long,

Defining Fields 4-17

Defining a Sequential Number Generator

Defining a Sequential Number Generator

Use the gdef define generator statement to assign sequential numeric keys to a
database field. The generator_name must be less than or equal to 31 characters and
must be unique across the database.

The following example is a generator for invoice numbers, where inv_num is the gen-
erator name, create_inv is the trigger name, invoices is the relation name, invoice_-
number is the field name, and 1 is the increment:

define generator inv_num;

define trigger create_inv for invoices

pre store 0:

begin

new. invoice_number = gen_id(inv_num, 1)
end;
end_trigger;

When you use gdef -e to extract metadata from a database, the define generator
statements are also extracted.

4-18 Defining Fields

Providing Additional Qli Support

Providing Additional Qli Support

Qli is an interactive interface to databases managed by InterBase. You can do the fol-
lowing to make a field more usable in gli:

* Define an edit string to format values.
e Define an alternate name for a field.

e Provide an alternative column label for a field.

These options are described below.

Defining Edit Strings

You can define an edit string to specify an alphabetic, numeric, or date format for a
field or computed value. The following statement defines a relation with several date
fields, each of which has an edit string:

define relation family_dates
name varying [107],
birth date edit_string "d(2)bm(12)by(4)",
wedding date edit_string "d(2)’/'n(2)’/'y(4)",
graduation date edit_string "y (4)";
In the preceding date edit strings:
e d(2) means “print the day of the month using two characters.”
* b means “leave a blank space.”
e m(12) means “print the alphabetic English month using twelve characters.”
* n(2) means “print the numeric month using two characters.”

* y(4) means “print the year using four characters.”

Qli displays the values as follows:

NAME BIRTH WEDDING GRADUATION
Katrina 29 May 1956 17/01/1981 1971
Boris 09 April 1954 17/01/1981 1968

The following statement defines a relation with edit strings for each of the fields:

define relation employee_stuff
social_security char [9] edit_string "XxXX-XX-XXXX",
phone_number char [10] edit_string " (xxX)BXXX-XXxxX",
salary long edit_string "HHHHHHHHH";

Defining Fields 4-19

Providing Additional Qli Support

In the preceding edit strings:
¢ The social security number is formatted as it usually appears.

¢ The telephone number is formatted with the area code in parentheses, a blank,
and then the number.

e The salary is displayed in hexadecimal representation.

Qli displays the values as follows:

SOCIAL PHONE
SECURITY SALARY NUMBER

012-34-5678 d9dbb (617) 555-0210

Defining Alternate Field Names

If you use a database that was defined by someone else, you may find the definer’s
choice of field names does not coincide with what your choice might have been. Or if
you use qli frequently, you may find your field names are not easy to type. For exam-
ple, although the field names LONGITUDE_DEGREES, LONGITUDE_MINUTES,
and LONGITUDE_COMPASS leave no doubt as to the contents of those fields, they
are difficult to type.

You can define alternate field names for use in qli, thereby allowing you to type
shorter, easier, or more meaningful field names. These alternate names are called
query names.

The following field definitions supply a query name for each of the constituent longi-
tudinal fields:

define field longitude_degrees char (2]
query_name longd;

define field longitude_minutes char[3]
query_name longm;

define field longitude_compass char[1]
query_name longc;

Therefore, the following qli statements are equivalent:
QLI> print longitude_degrees of cities
QLI> print longd of cities

However, when qli displays the records you selected, it uses the full field name to label
the column headers. To change the column headers, see below.

4-20 Defining Fields

Providing Additional Qli Support

Providing Alternative Column Names

For reasons of meaningfulness or length, you may want to have qli display a column

header other than the field name. For example, if you were to use the full names of the
fields that comprise the latitude and longitude of the CITIES as column headers, the

display would be very wide and would wrap on smaller screens,

You can either define query headers to match the query name or have entirely different
query headers. The following statement defines the same name for both query headers
and names:

define field longitude_degrees char([2]
query_name longd
query_header "longd";

define field longitude_minutes char[3]
query_name longm
query_header "longm";

define field longitude_compass char (1]
guery_name longc
query_header "longc";

Note

Query headers must be quoted, while query names are not quoted.
The reason for this is that the query header can be a string that con-
tains blanks and multiple words, but the query name is a single
word without blanks.

The following statement defines a query header with a blank space:

define field longitude_degrees char[2]
query_name longd
query_header "long deg";

If the query header is much longer than the length of the values displayed (for example,
LONGITUDE_COMPASS is one-character long) or too long to fit on one line, you can
insert a line break wherever you want. Qli uses the slash character (/) as its line break
character. For example, the following statement defines a query header that is printed
on three lines:

define field longitude_degrees char(2]
query_name longd
query_header "long-"/"itude"/"degrees";

Defining Fields 4-21

Modifying Fields

Modifying Fields

There are two ways to modify a field definition:

¢ Use the modify field statement to change field attributes for all relations that
use the field.

¢ Use the modify relation statement to change field attributes only in the target
relation.

Each of these methods are described below, followed by a list of special considerations.

Using the Modify Field Statement

You can modify the global attributes of a field definition by using the modify field
statement. Changing the field definition once with this statement changes the field
everywhere it occurs.

For example, to change the CITY field from 25 characters to 30, and change the que-
ry_header to “Residence,” type:
modify field city varying[30]

query_header ‘Residence’;

This statement automatically updates the definitions of the field CITY in
RDBS$FIELDS, the system relation that defines fields. It also changes the definition of

the CITY field in all the relations in which it occurs.

Note

Be careful when you modify a field definition to make the field
length shorter. InterBase allows you to do this; but, you may get a
truncation error when you try to access the field.

Using the Modify Relation Statement

You can modify the field definition by using the modify relation statement. With this
statement, you can change the query_name, query_header, edit_string, and security_-
class attributes of a field.

When you use the modify relation statement, InterBase changes the field attributes
only in the target relation. It does not change the field attributes globally.

For example, to modify the query_header and query_name of the CITY field in the
STATES relation, type:

4-22 Defining Fields

Modifying Fields

modify relation states
modify field city query_header ‘Capital’
query_name ‘capital’;

This statement automatically updates the definition of the field within RDB$RELA-
TION_FIELDS, which describes the characteristics of fields as they occur in an indi-
vidual relation.

Note

If you try to modify a global attribute of a field by using the modify
relation statement, gdef returns an error.

Considerations for Modifying Fields

When you modify fields, note that:

Because of its ability to keep track of older record versions, InterBase does not
have to make massive updates to the disk when you change a field definition. No
matter how many times the definition changes, InterBase can access the appro-
priate version of the field definition.

The changes you make will not affect existing users of the database until they re-
attach to it.

InterBase always writes to disk the newest version of the field definition when a
record is updated.

You can’t change a field’s datatype to or from the blob datatype. If you want to do
so, define the new field, write a program that copies data to the new field, and then
delete the old field.

For information about reading and writing blobs, refer to the chapter on using blob
fields in the Programmer’s Guide.

If you change the datatypes or increase the lengths of fields used in a computed
by field definition, you may have to redefine the computed by item to ensure
that it’s compatible with its source fields. For more information on computed
fields, refer to Chapter 5, Defining Relations.

Defining Fields 4-23

Deleting a Field Definition

Deleting a Field Definition

There are two ways to delete a field definition:

¢ Use the delete field statement to delete a field definition from the database. You
can only use this statement when the field is not included in any relations.

¢ Use the modify relation and the drop field statements to delete a field defini-
tion from a specific relation.

For example, if the CLIMATE field is not included in other relations, you can delete it
from the database by typing this statement:

modify database "atlas.gdb";
delete field climate;

However, if CLIMATE is included in a relation, you must first delete it from the rela-
tion in which it’s included, and then remove it from the database with a delete field
statement;

modify database "atlas.gdb";
modify relation cities
drop field climate;
delete field climate;

If you don’t know if a field is included in a relation, use the gqli show field statement.

4-24 Defining Fields

For More Information

For More Information

For more information on defining, modifying, and deleting fields, refer to Chapter 5,
Defining Relations, and to the following entries in the DDL Reference:

* define field

¢ define relation
e modify field

¢ modify relation
¢ delete

Defining Fields 4-25

4-26

Chapter 5
Defining Relations

This chapter discusses how to define fields for relations and how to modify and delete
relations.

Overview

Relations consist of one or more fields. You define a relation by naming the relation and
naming or defining its component fields.

You can create fields in a relation by using:
¢ Define relation statements. These statements can fully define a new field, in-
clude a previously defined field, and compute a value from other fields in the rela-

tion.
e Define field statements, as described in Chapter 4.

Instructions for defining fields with the define relation statement are presented
below, followed by a discussion of defining external relations and modifying relations.

Defining Relations 5-1

Defining a New Field for a Relation

Defining a New Field for a Relation

You can use the define relation statement to define a new field for a relation. For

example, the statement below defines the new fields NAME, RANGE, and INHAB-
ITED:

define relation mountains
name varying [10],
range varying [15],
inhabited char [1]

valid 1if (
inhabited = "Y" or
inhabited = "N" or

inhabited missing)
missing_value is "?";

When you define a new field with the define relation statement, InterBase stores the

field definition as a global template, just as it does when you define a new field with
the define field statement.

The following considerations apply when you define a field with the define relation

statement:

* The field name you choose must not conflict with any existing global field names.

* You can reference the field in subsequent relation definitions.

* You can assign any of the attributes discussed in Chapter 4. You can also assign
the security class attribute, which is a local attribute.

InterBase stores the definitions of fields defined with the define relation statement
in the RDB$FIELDS and the RDB$RELATION_FIELDS system relations.

5-2 Defining Relations

Including Existing Fields in a Relation

Including Existing Fields in a Relation

You can use the define relation statement to include previously defined fields in a
relation. For example, the following statements define five new fields with define
field statements. The define relation statement then includes those fields in the
BADGE_NUM, DEPARTMENTS, and EMPLOYEES relations:

define field BADGE long;

define field BIRTH_DATE date;

define field DEPARTMENT char [3];
define field FIRST_NAME varying [10];
define field LAST_NAME varying [20];

/* Relation Definitions */

define relation BADGE_NUM
BADGE position 0;

define relation DEPARTMENTS
DEPARTMENT position O,
MANAGER based on BADGE position 1;

define relation EMPLOYEES
BADGE position 0,
BIRTH_DATE position O,
FIRST_NAME position 1,
LAST_NAME position 2,
SUPERVISOR based on BADGE position 3,
DEPARTMENT position 4;

Whenever you include fields in a relation, you can change certain attributes and assign
specific field names. These topics are discussed below.

Changing Field Attributes

You can change the following attributes of an included field:
e Edit string

* Query header

® Query name

You can’t change a field’s datatype, missing value, or validation criteria.

Defining Relations 5-3

including Existing Fields in a Relation

If any of the relation-specific characteristics conflict with those originally defined for
the field, the relation-specific characteristics override those of the field.

For example, a field definition may include a qli query name that is inappropriate for
a given relation. When you include the field in that relation, you can provide a different
query name while retaining other field characteristics.

InterBase stores relation-specific information for an included field in the RDB$RELA-
TION_FIELDS system relation.

Assigning a Specific Field Name

You can give an included field a name specific to a relation. The based on clause pro-
vides this “alias” capability, as shown in the following example:

define relation DEPARTMENTS
DEPARTMENT position 0,
MANAGER based on BADGE position 1;

The alias you choose must be unique among the field names for the relation, but can
duplicate names used in other relations.

InterBase stores both the relation-specific name and the base-field name in the
RDB$RELATION_FIELDS system relation.

5-4 Defining Relations

Defining Computed Fields for a Relation

Defining Computed Fields for a Relation

You can define a field by using a computed formula. A computed field is a virtual field.
InterBase never stores data in such fields. Instead, it uses the formula to retrieve the

requested data.

The following relation contains a computed field in which the author’s name is obtained
by concatenating the value of FIRST_NAME to LAST_NAME:

define relation books
lib_congress,
title,
last_name,
first_name,
author computed by (first_name | " " | last_name),
publisher,
year,
city;

A computed field can have any combination of the supported arithmetic operations,
including addition, subtraction, multiplication, division, and concatenation. For
example, this definition of STATES defines two computed fields, ACRES and
METRIC_AREA:

define relation states
state,
capitol,
area,
acres computed by (area * 640)
{ 640 acres to a square mile },
metric_area computed by (area * 2.59)
{ 2.59 square kilometers to a square mile };

The following considerations apply to computed fields:
e They are not globally available, because their formula is meaningful only within
the context of the relation where they are defined.

¢ They can have names that duplicate global field names.

¢ Their names must be unique within the relation in which they are defined.

e Ifyoudon’t supply a datatype for computed fields, InterBase automatically selects
an appropriate datatype, as in the examples above.

InterBase stores the definitions of computed fields in the RDB$FIELDS system rela-
tion in the form RDB$integer for each computed field. For example, InterBase stores
the source name RDB$1 for the first computed field you define.

Defining Relations 5-5

Defining External Relations

Defining External Relations

An external relation is a relation whose data resides on an external file, rather than in
an InterBase database. External relations give InterBase programs and utilities access
to files managed by the operating system. They are useful when you want to:

* Make data used by existing non-database applications available to database pro-
grams

¢ Load data created by old applications into the database
You can define external relations that use data residing in Apollo AEGIS stream files,
UNIX stream files, VM'S RMS sequential files, and VMS RMS indexed files. If you
define an external relation for a VMS RMS indexed file, InterBase uses the index. The
external file specified in an external relation must reside on the same node as the pri-
mary database file with one exception: on VMS, a pathname containing a DECnet
specification is permitted for the external file.

Note

You can define external relations only for data composed of fixed-
length fields. The fields must be defined with datatypes that
InterBase can manage.

Using External Relations

Instructions for using external relations are presented below, followed by a list of spe-
cial considerations.

Using External Relations for Data Access

To use an external relation for data access, define the relation to InterBase as follows:
1. Name the external file where the data resides.

2. List all the fields contained in the external file. List them in the order in which
they appear in the file’s records.

3. Ifthe external file contains field separators, include dummy fields in your record
definition that map to the separator characters.

4. If the external file contains a record terminator character, define a dummy field
with length 1 at the end of the relation.

5-6 Defining Relations

Defining External Relations

The following statements define an external relation called EXT_EMPLOYEES that
resides on an RMS indexed file:

define relation ext_employees external_file
"$disk2: [home.data.bases]emp.idx"

badge long,
first_name char [10],
last_name char [20],
supervisor long;

If this file contains record separators and a record terminator character, include
dummy fields as appropriate:

define relation ext_employees external_file
"$disk2: [home.data.bases]emp.idx"

badge long,

sl char [11,
first_name char [10],
s2 char [1],
last_name char [20],
s3 char [11],
supervisor long,

s4 char [1],
birth_date char [12],

tl char [11;

When you reference this relation from qli or an InterBase program, InterBase opens
the file and reads the records that you request.

Using External Relations for Data Transfer

You can transfer data from an external file to an InterBase relation by using an exter-
nal relation. Instructions for transferring data, changing the datatypes of loaded data,
and converting data formats that InterBase can’t interpret are presented below.

Transferring the Data

To use an external relation for data transfer:
1. Define the external relation to InterBase as described in the previous example.

2. Define an internal relation based on the external relation. You can do this easily
by using qli:

QLI> define relation employees based on ext_employees
QLI> show employees

Defining Relations 5-7

Defining External Relations

EMPLOYEES

BADGE long binary

S1 text, length 1
FIRST_NAME text, length 10
S2 text, length 1
LAST_NAME text, length 20
S3 text, length 1
SUPERVISOR long binary

54 text, length 1
BIRTH_DATE text, length 12
T1 text, length 1

3. Drop any unwanted fields from the internal relation:

QLI> modify relation employees
CON> drop sl, drop s2, drop s3, drop s4, drop tl

4. Use the gli restructure statement to copy the data from the external to the in-
ternal representation:

QLI> employees = ext_employes

Changing the Datatypes of Loaded Data

Once you have loaded your data, you may want to change the datatypes of some fields.
For example, you may want to change fields that store numbers as ASCII digits to float
or double fields. You may also want to change fields that store dates as characters to

date fields.

Before you try to change the datatype of a field, be sure the data is in a form InterBase
can understand. For example, you can covert date data if it’s stored as “MMM DD,
YYYY”. If the data is not in a form InterBase can understand, you may be able to con-
vert it to an understandable form. An example for doing this is presented below under
Converting Data. For a list of date formats acceptable to InterBase, refer to the chapter
on using date fields in the Programmer’s Guide.

When you change the datatypes of loaded data, you must first separate the field defi-
nitions in the exernal file from the internal definitions. This is because you can’t
change a datatype in an external file. For example, to change the datatype of the
BIRTH_DATE field:

1. Define a new global field that describes the external data:
QLI> define field old_bd char [12]

2. Redefine the external field so it uses the new global field:

5-8 Defining Relations

Defining External Relations

QLI> modify relation ext_employees
CON> modify field birth_date based on old_bd

3. Change the global field definition for BIRTH_DATE:
QLI> modify field birth_date date

InterBase converts your data automatically.

Converting Data

Sometimes data in external files is not in a format that InterBase can interpret and
convert automatically. This is often true for date data. For example, suppose the
BIRTH_DATE field in the example above contains the value “760704” and that this

value represents July 4, 1976.
To convert this data:

1. Define three two-character fields to represent the date in the external relation:

define relation ext_employees external_file
"$disk2: [home.data.bases]emp.idx"

badge long,

sl char [1],
first_name char [107],
s2 char [1],
last_name char [20],
s2 char [117,
supervisor long,

year char [2],
month char [21],
day char[2],
tl char [1];

2. Define an internal relation based on the external relation:

QLI> define relation employees based on ext_employees

3. Drop any unwanted fields from the internal relation:

QLI> modify relation employees
CON> drop sl, drop s2, drop s3, drop s4, drop tl

4. Use the gli restructure statement to copy the data from the external to the in-
ternal representation:

QLI> employees = ext_employes

5. Add a BIRTH_DATE field to the internal relation:

Defining Relations 5-9

Defining External Relations

QLI> modify relation employees
CON> add field birth_date date

6. Convert the data in the internal relation:

QLI> for employees modify using
CON> birth_date = day | "/" | month | "/" |year

7. Drop the YEAR, MONTH, and DAY fields from the internal relation:

QLI> modify relation employees
CON> drop field year, drop field day, drop field month

If you plan to move data regularly from external to internal format, you should use a
trigger to build the new date format from the old year, month, and day. In this case,
the internal relation should include the YEAR, MONTH, DAY, and BIRTH_DATE

fields, so that data can be tranferred from the old format to the new one.

Considerations for Defining and Using External Relations

The following con51derat10ns apply to the use of external relations:

¢ The data in the external file must be defined with datatypes that InterBase can
manage. For example, the data can be ASCII character, integer, or float, but not
packed decimal or EBCDIC.

* The fields in the external file must be of fixed length. If the data contains sepera-
tor characters, you must include dummy fields in your definition of the external
relation. These fields must map to the separator characters.

* You can use InterBase to add records to an external relation, but you can’t modify
or delete the data in existing records.

* External relations are not under transaction control. Commit and rollback opera-
tions do not affect updates to external relations, so that uncommitted updates are
visible immediately to other users.

¢ InterBase’s multi-generational concurrency control does not apply to external re-
lations. Instead, the external relation uses operating-system level concurrency
control. For some operating environments, only one user is allowed to read or
write to an external file at any time. For other environments, users can share the
file, but the file is not protected from concurrent updates.

* The metadata for external files can’t be changed dynamically. To add or drop
fields from an external relation, you must create a new file with the structure you
want and restructure the data from the old file to the new file.

5-10 Defining Relations

Defining External Relations

Because the concurrency and consistency control provided by InterBase is significantly
better than that provided by the operating systems, you should load external data into
the database if you plan to update that data.

If you plan to read the data only, you can leave it as an external relation.

Defining Relations 5-11

Modifying Relations

Modifying Relations

You can change a relation by:
e Adding fields

e Dropping fields

e Changing the query name, query header, edit string, or security class of a field
within the relation

¢ Changing the default display order of fields within the relation

e Changing the security class associated with the relation

Changes made with a modify field statement to global field characteristics (datatype,
missing value, and validation criteria) are automatically reflected in each relation in
which those fields occur.

The following modify relation statement modifies the CITIES relation by a dropping
a field, adding fields, and adding query names:

modify relation cities

drop field population,

add field population_1950 long,

add field population_1960 long,

add field population_1970 long,

add field population_1980 long,

modify field latitude_degrees
gquery_name 1d,

modify field latitude_minutes
guery_name 1m,

modify field latitude_compass
query_name l1lc;

This modify relation statement changes the default qli display order of fields in the
CITIES relation. It moves the POPULATION fields to the beginning of the display:

modify relation cities

modify field population_1950 position
modify field population_1960 position
modify field population_1970 position
modify field population_1980 position
modify field city position 5;

modify state position 6,

modify fieﬂ? altitude 7,

’

’

’

=W NP

’

5-12 Defining Relations

Modifying Relations

Special considerations are involved in modifying global field characteristics and com-
puted fields. These are described below.

Modifying Global Field Characteristics

You can’t change global field characteristics through a relation, even though you may
have originally defined the field through the relation.

When you want to change any field characteristic other than its query name, query
header, position, description, or security class, you must use a modify field statement.

Modifying a Computed Field

You can’t directly modify the definition of a computed field. Instead, you must redefine
the field by dropping it and and re-adding it.

If you have a computed field that consists of concatenated fields, you need to redefine
the computed field whenever you increase the length of the constituent fields.

For example, suppose you had a field, FULL_NAME, computed by concatenating a 10-
character field FIRST NAME to a space and a 15-character field LAST_NAME:

define relation employee
first_name varying[10],
last_name varying[15],
full_name computed by
(first_name | " " | last_name),
emp_id char[9],
dept_num char[3];

Gdef provides a length for the field definition by adding the length of the fields with
the length of the separating space. In this example, the length of FULL_NAME is 26.

Suppose you modify the source fields later on by increasing their length to 15 and 25.
Although the concatenation now results in a field that’s 41 characters long, the length
of the computed field remains 26. This problem does not surface until you reference the
computed field, at which time InterBase returns a data conversion error.

You don’t have to redefine a computed field if you decrease the length of the constituent
fields, or if the fields are computed numerically.

Defining Relations 5-13

Deleting Relations

Deleting Relations

You delete a relation by using the delete relation statement. This statement removes
the specified relation and all of its data from the database. You can’t roll back this oper-

ation, so use it carefully.

The following statement deletes the MOUNTAIN_RANGES relation from the data-
base:
delete relation mountain_ranges;
Note

You can’t delete a relation that’s used in a view. You must delete the
view before you delete the relation.

5-14 Defining Relations

For More Information

For More Information

For more information on defining, modifying, and deleting relations, refer to these
entries in the DDL Reference:

¢ define relation

e modify relation

* delete

* Boolean expression

For more information on defining fields for relations, refer to Chapter 4, Defining
Fields, and to these entries in the DDL Reference:

¢ define field
e define relation

Defining Relations 5-15

Chapter 6
Defining Views and Indexes

This chapter discusses how to define, modify, and delete views and indexes. It also dis-
cusses how to add indexes to existing relations.

Overview

A view is a relation that consists only of a stored definition rather than stored data. A
view derives data from one or more source relations each time it’s requested. To a user,
a view is indistinguishable from a regular stored relation.

You use the following statements to define, modify, and delete a view:
¢ define view

e modify view

e delete view

An index is an internal data structure that InterBase uses to locate records quickly.
When executing a query, InterBase first looks to see which, if any, indexes exist for the

Defining Views and Indexes 6-1

Overview

involved relations. It then calculates the best way to answer the query and uses the
indexes that yield the best performance.

You can define any number of indexes on a relation, each of which will perform with
the same quick speed.

You use the following statements to define, modify, and delete an index:
e define index

¢ modify index

e delete index

Detailed instructions for defining, modifying, and deleting views and indexes are pre-
sented in the remainder of this chapter.

6-2 Defining Views and Indexes

Defining Views

Defining Views

A view can be:
* Avertical subset of fields from a single relation. This type of view limits the fields
that are displayed.

* A horizontal subset of records from a single relation. This type of view limits the
records that are displayed.

* A combined vertical and horizontal subset of records from a single relation. This
type of view limits both the fields and records that are displayed.

* A subset of records from many relations. This type of view usually performs a join
operation.

Examples of views are presented below, followed by special considerations.

Limiting Fields

You can define a view containing only those fields your program references. The follow-
ing view contains several fields from all records in the CITIES relation:

define view map_cities of ¢ in cities
{ data for locating cities on map grid }
c.city,
c.state,
c.latitude,
c.longitude;
The phrase c in cities is a record selection expression (RSE) that specifies which records
are to be returned. In this case, all records in the CITIES relation qualify.

Limiting Records

You can define a view that limits the number of returned records. The following view
returns all fields for cities located above 40 degrees latitude:

define view ice_belt of ¢ in cities
with c.latitude_degrees ge 40

.city

.state,

.population,

.altitude,

.latitude_degrees,

.latitude_minutes,

a0 a0aQa0aQa

Defining Views and Indexes 6-3

Defining Views

.latitude_compass,
.longitude_degrees,
.latitude_minutes,
.longitude_compass,
.latitude,
.longitude;

Q00000

Limiting Both Fields and Records

You can define a view that limits both the fields and the records returned to the pro-
gram. The following view returns a subset of fields for cities located above 40 degrees
latitude:

define view ice_belt of ¢ in cities
with c.latitude_degrees ge 40

.city,

.state,

.population,

.altitude,

.latitude,

.longitude;

Qa0 0a0a0aQn

Accessing Records from Multiple Relations

You can use a view to access data from multiple relations. This access can take many
forms. For example, you can use a view to:

* Retrieve data from multiple relations.

e Check other relations for the existence of specific records. In this case, the view
may or may not display data from the other relations.

¢ Calculate the value of a computed field.

Examples of these uses are shown below.

Example 1 — Retrieving Data from Multiple Relations
This view joins the CITIES relation to the STATES relation:

define view capital_cities of s in states
cross ¢ 1in cities with
s.capital = c.city and
s.state = c.state
c.city,

6-4 Defining Views and Indexes

Defining Views

.state_name,
.altitude,
.latitude,
.longitude;

Q0 n

You can use as many cross clauses as necessary to select the records you need.

Example 2 — Checking for the Existence of Specific Records

This view returns only those STATES records for which there is at least one record in
the SKI_AREAS relation that has the same value for the STATE field:

define view ski_states of s in states
with any shush_boom in ski_areas
with s.state = shush_boom.state

.state,

.capitol,

.area,

.population;

n n n n

Example 3 — Calculating the Value of a Computed Field

You can have InterBase compute the value of a field by referencing field values in other
relations.

This view includes several fields that are computed by dividing field values in one rela-
tion by field values in another relation:

define view population_density of s in states
cross p in populations with s.state = p.state
s.state,

density_1950 computed by (p.census_1950 / s.area),
density_1960 computed by (p.census_1960 / s.area),
density_1970 computed by (p.census_1970 / s.area),
density_1980 computed by (p.census_1980 / s.area);

In this example, InterBase calculates the values for the various density fields by taking
the census data from the POPULATIONS relation and dividing it by the area of each
state.

Defining Views and Indexes 6-5

Defining Views

Considerations for Defining Views

6-6

Views that don’t have join operations can be updated like regular stored relations.
However, multi-relation views and single-relation views based on reflexive joins
can be updated only through triggers.

For more information on updating views, refer to Chapter 7, Preserving Data In-
tegrity.

You can’t include a record selection expression sorted clause in a view definition.

SQL security does not apply to views. If you want to secure a view, assign it an
appropriate security class. For more information on securing views, refer to Chap-
ter 8, Securing Data and Metadata.

Defining Views and Indexes

Modifying and Deleting Views

Modifying and Deleting Views

You modify a view by using the modify view statement. This statement lets you drop
a field from a view, and add or change a security class.

The following statement makes several changes to the GEO_CITIES view:

modify view geo_cities
{new version of the geo_cities view }
drop field altitude,
drop security_class,
add security_class top_secret;

If you want to change record selection criteria or add fields to a view, you must delete
the view and then re-create it with the new criteria and fields.

You delete a view by using the delete view statement. The following statements delete
the GEO_CITIES view and recreate it with a new field:

delete view geo_cities;

define view geo_cities of cities
{ comment goes here }
altitude,
latitude,
longitude,
security_class top_secret;

Defining Views and Indexes 6-7

Defining Indexes

Defining Indexes

As a general rule, you should define an index for:

e Arelation’s primary key. You should always use the unique option when you de-
fine an index for a primary key. If the key consists of multiple fields, you would
define a multi-segment index to represent it.

e Arelation’s foreign keys. Placing an index on primary and foreign keys enhances
performance when relations are joined. It also preserves referential integrity.

¢ Non-key fields that are accessed frequently for retrieval purposes.
¢ Non-key fields that are unique.
You should not define an index for non-key fields that are updated frequently. Updat-

ing an indexed field takes longer than a non-indexed field, because InterBase must
modify the index whenever the field value changes.

Because indexes require additional storage space, you should only define them where
needed.

Index Definition Examples
You define an index by using the define index statement. For example, the following
statement defines a single-segment index for the STATE field in the STATES relation:

define index states_idxl for states

state;

This statement defines a multi-segment index for the STATE and RIVER fields in the
RIVER_STATES relation:

define index rivstate_indxl for river_states state, river;
You can use indexes to eliminate duplicates and to make a descending sort more effi-

cient. If you want to:
* Eliminate duplicates, include the unique option when you create the index.

This causes InterBase to disallow users from storing duplicate values in the in-
dexed field. For example:

define index states_idxl for states
unique state;

define index states_idx2 for cities
unique city, state;

6-8 Defining Views and Indexes

Defining Indexes

* Make a descending sort on a field or group of fields more efficient, include the de-
scending option when you create the index. For example:

define index states_idxl for states
unique descending state;

* Make an ascending sort on a field or group of fields more efficient, either include
the ascending option when you create the index or leave off the ascending or
descending options entirely. The ascending option is the default. For example:

define index states_idxl for states
unique ascending state;

define index states_idx2 for states
unique state;

Considerations for Defining Multi-Segment Indexes

InterBase optimizes a query against a multi-segment index by using the first field in
the index. If the query uses an index segment without using all previous segments,
InterBase does not optimize the query.
For example, suppose you define the following index:
define index states_idx2 for cities
unique city, state;
This query is optimized against the index:

select * from cities where city = ‘Boston’;

This query is not optimized against the index:

select * from cities where state = 'MA’;
Because of the way InterBase optimizes queries against multi-segment indexes, it’s
best to use several single-segment indexes when you expect to issue a mixture of que-

ries against a relation. The main reason to use a multi-segment index is to enforce
uniqueness.

Defining Views and Indexes 6-9

Modifying Indexes

Modifying Indexes

You can do any of the following when you modify indexes:
¢ Change an index’s unique option.

¢ Change an index’s ascending or descending option.

* Deactivate an active index. This action is recommended before loading a large
number of records, so that the index is not modified incrementally.

e Reactivate an inactive index.

For example, this statement changes an index to inactive:

modify index 1dx_100 inactive;

Special Considerations for Indexes

The following considerations apply to indexes:

¢ Ifyouwant to change an index to include another key or to remove an existing one,
you must delete the index and create a new one.

* You can’t add a unique option to an index if the indexed field contains duplicate
data.

¢ Ifyou try to modify an index that’s currently in use in an active database, gdef
waits until the index is not in use.

¢ Indexes can get unevenly filled when you make a lot of changes to your database.
There are two ways to reclaim unused index space and reduce the depth of the in-
dex tree:

— Deactivate and reactivate the affected indexes.
— Back up and restore your database using gbak.

Both of these actions cause the indexes to be rebuilt. For information on using
gbak, refer to the chapter on backup and recovery in Database Operations.

6-10 Defining Views and Indexes

Deleting and Adding Indexes

Deleting and Adding Indexes

You delete an index by using the delete index statement. For example, the following
sequence of statements first deletes an index named IDX_1 and then creates a new

IDX_1:

delete index idx_1;

define index idx_1 for cities
unique state, city;

You can’t delete an index that’s currently in use in an active database. If you try to do
this, the results depend on the type of transaction you are using. If the transaction is a:

e Wait transaction, the delete waits until the index is not in use. Both gdef and gli
use wait transactions.

e Nowait transaction, gdef returns an error.
As a rule, you create new indexes for a database more than you delete existing ones.
For example, during your initial application analysis you might not have realized that

many queries will be referencing an unindexed field. You can probably increase perfor-
mance significantly by defining an index for that field.

Creating an index for an existing relation may take some time, because gdef builds
the index before it exits.

Defining Views and Indexes 6-11

For More Information

For More Information

For more information on defining, modifying, and deleting views, refer to these entries
in the DDL Reference:

e define view

e modify view

e delete

* Boolean expression

For more information on defining, modifying, and deleting indexes and more informa-
tion on adding new indexes, refer to these entries in the DDL Reference:

e define index
¢ modify index
e delete

6-12 Defining Views and Indexes

Chapter 7
Preserving Data Integrity

InterBase provides a variety of mechanisms that automatically preserve the integrity
of your data. This chapter discusses integrity rules and the InterBase mechanisms for
enforcing those rules.

Overview

There are four types of rules that can be used to preserve data integrity:
e Entity integrity

¢ Referential integrity

¢ Domain integrity

* Application integrity

Preserving Data Integrity 7-1

Overview

Entity Integrity

Entity integrity preserves the uniqueness of each relation in your database. This rule
states that the following conditions are true for every database relation:

¢ Each primary key is unique.

e Each component of a primary key in a base relation is non-null.

You enforce entity integrity by defining a unique index on the fields that comprise the
primary key. Instructions for defining a unique index are presented later in this chap-
ter.

Referential Integrity

Referential integrity protects the relationship between associated database relations
when the relations are updated. It ensures that one of the following conditions is true
for a relation that contains a foreign key.

* The value of the foreign key references an existing primary key.
* The value of the foreign key is null.

You derive referential integrity rules from your company’s business requirements. For
example, you can define a referential integrity rule to prevent an atlas database appli-
cation from adding a city for which no valid state exists.

You enforce referential integrity by using triggers to specify the relationship between
two relations. For example, you can write a trigger that automatically checks whether
a state exists in the STATES relation before a new city is stored in the CITIES relation.

Instructions for using triggers are presented later in this chapter.

Domain Integrity

Domain integrity ensures that the data inserted into relations is valid. You can enforce

domain integrity at two different levels:

¢ By defining a field and assigning it a datatype, you authorize the database to re-
strict the insertion of data to that datatype. For example, a field defined as a dou-
ble float does not accept a character string.

* You can then define validation criteria that further restricts the values that can
be inserted into the field. For example, you can restrict a field so that it accepts
the abbreviation MA, but rejects Ma.

Instructions for defining validation criteria are presented later in this chapter. For
information on assigning datatypes to a field, refer to Chapter 4, Defining Fields.

7-2 Preserving Data Integrity

Overview

Application Integrity

Application integrity ensures that the data in your database meets all your company’s
business requirements. This is the most general form of data integrity. It includes the
specific types of data integrity discussed above (entity integrity, referential integrity,
and domain integrity). It also includes all other business requirements.

Not allowing users to delete or modify cities that are state capitals is an example of
application integrity.

You can enforce most application integrity rules by using triggers.

Preserving Data Integrity 7-3

Defining a Unique Index

Defining a Unique Index

You define a unique index by using the unique option on the define index statement.
For example, to define a primary key for the CITIES relation, you would define a
unique index on the CITY and STATE fields:

define index cities_1 for cities unique
city,
state;

This definition disallows all CITIES records that duplicate a city by name and state.

Once you define a unique index, InterBase automatically enforces the uniqueness of
that index. User programs don’t need to check for duplicates. Instead, they need to
include error-handling code that can handle a user’s attempt to store a duplicate
record.

Note

You can’t define a unique index for fields containing null values.
You also can’t store null values into fields that are part of a unique
index.

For more information on defining indexes, refer to Chapter 6, Defining Views and
Indexes.

7-4 Preserving Data Integrity

Defining Validation Criteria

Defining Validation Criteria

You define validation criteria for a field by using the valid_if clause on the define

U 69

field statement. For example, to restrict the ELECT_APPT field’s value to “y”, “n”, or
missing, type:
define field elect_appt char [1]
valid if (elect_appt = 'y’ or elect_appt = 'n’ or
elect_appt missing) ;
To restrict the CITY field to non-null values, type:

define field city varying [25]
valid if (city not missing);

InterBase automatically enforces validation criteria when it updates a field. For more
information on defining validation criteria, refer to Chapter 4, Defining Fields.

Preserving Data Integrity 7-5

Using Triggers

Using Triggers

A trigger is a piece of code that executes a specific action when a record in a relation is
stored, modified, or erased. Because triggers can access other relations, they can pro-
vide both referential integrity and application integrity.

Triggers are automatically executed, regardless of the interface through which you
store, modify, or erase the associated records.

Defining a Trigger

You define a trigger by using:

7-6

Any embedded GDML statement, except for:
— The on_error statement
— All blob handling statements other than assignments

GDML trigger language extensions, including the following predefined context
variables:

— New, which refers to the newly created record.

— 0ld, which refers to the record being modified or erased. For a complete de-
scription of these extensions, refer to the define trigger statement in the
DDL Reference

A trigger definition statement that names the trigger and associates it with a re-
lation.

A trigger activity indicator that specifies whether a trigger is active or inactive. An
active trigger executes immediately after the current transaction ends. By default,
all triggers are active.

Three other trigger indicators:

— A time indicator that specifies whether the trigger is activated before (pre)
or after (post) the associated store, modify, or erase action.

— An action indicator that associates the trigger with a store, modify, or erase
action.

— A sequence indicator that groups triggers together and specifies when they
are executed in relation to other groups of triggers. This only applies when
you define multiple triggers of the same type for the same relation.

For example, if you assign two pre modify triggers a sequence number of 0 and
three other pre modify triggers a sequence number of 1, the first group exe-
cutes before the second. Within each group, the order of execution is random.

If you don’t assign a sequence indicator, the trigger is given an indicator of 0.

Preserving Data Integrity

Using Triggers

* The abort statement, which terminates the action that called the trigger and re-
turns a status code and message to the fourth longword of the status vector.

* A message definition statement that lets you associate a message with an abort
code. The message is printed in gli and is available through the gds_$print_sta-
tus routine in a GDML or SQL program, if the program fails with the associated
code.

You can define multiple messages for each trigger.

Trigger Definition Components

The example below shows the various components of a trigger definition. It defines a
trigger that prevents users from modifying a state capital.

Trigger definition statement

define trigger retain_capitals for cities

Activity indicator

active

Time, action, and sequence indicators

pre modify O:

Trigger logic

begin
if (new.city ne old.city)
or (new.state ne old.state)

begin
for st in states with st.capital = old.city
and st.state = old.state
abort 1;
end_for;
end;

end;

end trigger

Preserving Data Integrity 7-7

Using Triggers

Message definition statement

message l:"You can’t modify a state capital.";

The trigger definition components are described below:
* Trigger definition statement. The trigger named RETAIN_CAPITALS is associat-
ed with the cities relation.

e Activity indicator. This trigger is active. Because it’s a pre type trigger, this trigger
will execute before the associated operation takes place.

e Time, action, and sequence indicators. This trigger will be activated before the
modify operation. It will be the first modify trigger activated at this time.

* Trigger logic. If the user has modified the CITY or STATE field, execute the logic
that follows.

If the CITY field being modified is a state capital, then stop the modify and return
the message associated with message code 1.

* Message definition statement. Add this message to the trigger and associate it with
message code 1.

Defining Multiple Triggers

You can define as many triggers as you need for a particular relation. You can define
these triggers in any combination.

For example, you may choose to define a single store, modify, and erase trigger for a
particular relation. Or, you may choose to define multiple store, modify, and erase trig-
gers for that relation.

The ability to define multiple triggers provides the following advantages:

* It gives you greater control over when the trigger is activated. For example, you
can define one or more triggers that get activated before a particular operation,
and one or more triggers that get activated after that operation.

¢ It lets you write several simple triggers rather than one elaborate one. This sim-
plifies the writing, testing, and maintaining of the trigger code.

Example of Defining Multiple Triggers

The example below shows how to define two modify triggers for a relation:

* The first trigger prevents users from modifying state capitals. This trigger is acti-
vated before the modify operation.

7-8 Preserving Data Integrity

Using Triggers

The second trigger enforces referential integrity between the CITIES relation and
the TOURISM relation. It ensures that the city name and state code in the TOUR-
ISM relation are modified when the corresponding city name and state code in the
CITIES relation are modified. This trigger is activated after the originial modify

operation.

define trigger retain_capitals for cities
pre modify O0:
begin
if (new.city ne old.city)
or (new.state ne old.state)
begin
for st in states with st.capital = old.city and
st.state = old.state
abort 1;
end_for;
end;
end;
end_trigger
message 1l: "You can’t modify a state capital";

define trigger enforce_integrity for cities
post modify O0:
begin
if (new.city ne old.city)
or (new.state ne old.state)
begin
for t in tourism with t.city = old.city and
t.state = old.state
modify t using
t.city = new.city:;
t.state = new.state;
end_modify;
end_for;
end;
end;
end_trigger;

Preserving Data Integrity 7-9

Using Triggers

Using Triggers with Views

You can use triggers to enforce referential and application integrity rules for views in
the same way that you use them to enforce these rules for stored relations.

You must use triggers if you want to update views that are based on multi-relation or
reflexive joins. Views that do not include joins can be updated like regular relations.

Example of Using Triggers with Views

Consider a view of the CITIES and STATES relations that displays the name of each
large city and its corresponding state:

define view big_cities of
c in cities cross s in states over state
with c.population > 100000
c.city,
c.population,
s.state_name;

The trigger below allows a user to store a new city through the BIG_CITIES view. This
trigger enforces the following integrity rules:

* When a user stores a new city through the BIG_CITIES view, a new record is cre-
ated in the CITIES relation.

® The state must already exist in the STATES relation for the store to take place.

define trigger update_through_view for big_cities
pre store O0:
begin
if not any s in states with s.state_name = new.state_name
abort 1;
else if not any ¢ in cities with new.city = c.city and
c.state = first s.state from s in states
with s.state_name = new.state_name
then store ¢ in cities using
c.city = new.city;
c.population = new.population;
c.state = first s.state from s in states with
s.state_name = new.state_name;
end_store;
end;
end_trigger
message 1: "State name is invalid.";

7-10 Preserving Data Integrity

Using Triggers

Updating a Trigger Definition

There are three ways of updating a trigger definition. You can:
e Modify the definition

* Delete the definition
* Deactivate the trigger

Instructions for performing these actions are presented below. The associated exam-
ples are based on this trigger definition:

define trigger retain_capitals for cities
pre modify O:
begin
if (new.city ne old.city)
and (new.state ne old.state)
begin
for st in states with st.capital = old.city
and st.state = old.state
abort 1;
end_for;
end;
end;
end_trigger
message 1l: "You can’'t modify a state capital.";

Modifying a Trigger Definition

You modify a trigger definition by using the modify trigger statement. For example,
to remove the if statement from the RETAIN_CAPITALS trigger, type:

modify trigger retain_capitals
begin
for st in states with st.capital = old.city
and st.state = old.state
abort 1;
end_for;
end;
end_trigger;

To change the sequence number of RETAIN_CAPITALS, type:

modify trigger retain_capitals
pre modify 2:
end_trigger;

Preserving Data Integrity 71

Using Triggers

To modify the trigger message, type:

modify trigger retain_capitals
msgmodify 1: "A state capital can’t be modified.";

Deleting a Trigger Definition

You delete a trigger definition by using the delete trigger statement. For example, to
delete the RETAIN_CAPITALS definition, type:

delete trigger retain_capitals;

Deactivating a Trigger

You deactivate a trigger by setting the trigger activity indicator to inactive. Once a trig-
ger is deactivated, it remains that way until you reset the indicator to active.
For example, to deactivate the RETAIN_CAPITALS trigger, type:
modify trigger retain_capitals
inactive;
To reactivate this trigger, type:

modify trigger retain_capitals
active;

Special Considerations for Triggers

When you use triggers, you need to consider whether a trigger is looking up data in
another table. If the lookup table is large and/or the trigger will be fired frequently,
consider placing an index on the lookup field to make the trigger processing more effi-
cient.

When you use triggers, you also need to consider:
* What happens when a trigger or an operation associated with a trigger aborts

* How triggers work with InterBase’s transaction processing

* What happens when the action executed by one trigger fires off another trigger

Each of these considerations is discussed below.

7-12 Preserving Data Integrity

Using Triggers

Undoing Triggers

InterBase treats a database operation and its associated triggers as a single unit. If any

part of this unit aborts, InterBase automatically rolls back all associated changes:

e If a pre type trigger aborts, InterBase rolls back the actions performed by the as-
sociated pre type triggers. It does not perform the store, modify, or erase operation.

e If the operation aborts, InterBase rolls back the actions performed by the associ-
ated pre type triggers. It does not execute the post type triggers.

* If a post type trigger aborts, InterBase rolls back the actions performed by the as-
sociated post type triggers; the store, modify, or erase operation; and the actions
performed by the associated pre type triggers.

Transaction Processing

Triggers operate within the context of transaction processing. Regardless of whether a
set of triggers complete successfully or not, the programmer can decide whether to com-
mit or roll back a transaction at a later point in time.

For example, suppose a program has the following logic:

1. Start a transaction.

a. The pre modify triggers execute.

2. Request a modify operation. b. The modify operation is performed.

¢. The post modify triggers execute.

3. Perform other actions.

4. Commit or rollback the transaction.

Here are some possible outcomes to this scenario:
* Steps 2 and 3 complete successfully and the programmer issues a commit in Step
4. In this case, all database changes are saved.

e Steps 2 and 3 complete successfully and the programmer issues a rollback in Step
4. In this case, all database changes are rolled back.

e Step 2 fails, Step 3 completes successfully, and the programmer issues a commit
in Step 4. In this case, all database changes made in Step 3 are committed. Any
database changes made in Step 2 have already been rolled back.

Preserving Data Integrity 7-13

Using Triggers

e Step 2 completes successfully, Step 3 fails, and the programmer issues a rollback
in Step 4. In this case, all database changes made in Steps 2 and 3 are rolled back.

Trigger Interrelationships

Whenever you define a trigger, you should be aware that other triggers might be auto-

matically fired off when the first trigger is executed. For example, suppose you define

two triggers:

¢ A modify trigger for the CITIES relation that cascades an update to the SKI_AR-
EAS table.

¢ A modify trigger for the SKI_AREAS relation that checks to see if the new city is
valid before it modifies a city.

If you make the trigger on the CITIES relation a pre type trigger, the trigger won’t do
what you want it to do. This is because:

1. InterBase tries to update the city field in the SKI_AREAS relation before that city
has been stored in the CITIES relation.

2. When InterBase tries to update the city field in the SKI_AREAS relation, the mod-
ify trigger on that relation is fired.

3. This trigger checks to see if the CITIES relation contains the new city. Because it
doesn’t yet contain this new city, the trigger aborts.

4. As aresult of the trigger failure, the original modify operation fails.

If you make the trigger on the CITIES relation a post type trigger, both triggers will be
successful.

The correct definitions for these two triggers are shown below:

define trigger cascading_modify for cities
post modify 0:
begin
if (new.city ne old.city)
or (new.state ne old.state)
begin
for t in ski_areas with t.city = old.city
and t.state = old.state
modify t using
t.city = new.city,
t.state = new.state;
end_modify;
end_for;
end;
end;

7-14 Preserving Data Integrity

Using Triggers

end_trigger;

define trigger valid_modify for ski_areas
pre modify O:
begin

if not any ¢ in cities with c.city = new.city

and c.state = new.state

abort 1;

end;
end_trigger
message 1: "City name is invalid.";

More Trigger Examples

Examples that show various uses of triggers are presented below.

Example 1 — Storing a Foreign Key

This example shows how to enforce referential integrity when storing a foreign key. In
this example, a user can only store a new TOURISM record if the record contains a
valid city. This city must already exist in the CITIES relation.

define trigger foreign_key_store for tourism
pre store 0:
begin

if not any ¢ in cities with c.city = new.city

and c.state = new.state

abort 1;

end;
end_trigger
message 1l: "City name is invalid.";

Example 2 — Implementing a Cascading Delete

This example shows how to enforce referential integrity by implementing a cascading
delete. In this example, when a user deletes a city from the CITIES relation, that city
is also deleted from the TOURISM and SKI_AREAS relations.

define trigger cascading_delete for cities
post erase 0:
begin
for t in tourism with t.city = old.city
and t.state = old.state

Preserving Data Integrity 7-15

Using Triggers

erase t;
end_for;
for s in ski_areas with s.city = old.city
and s.state = old.state
erase s;
end_for;
end;
end_trigger;

Example 3 — Implementing a Restricting Delete

This example shows how to enforce referential integrity by implementing a restricting
delete. In this example, a user can only delete a city from the CITIES relation if that

city is not a foreign key in the TOURISM and SKI_AREAS relations.

define trigger restricting_delete for cities
post erase 0:
begin
for t in tourism with t.city = old.city
and t.state = old.state
abort 1;
end_for;
for s in ski_areas with s.city = old.city
and s.state = old.state
abort 1;
end_for;
end;
end_trigger

message 1: "This city cannot be deleted, because it exists in

other relations";

Example 4 — Implementing a Nullifying Delete

This example shows how to enforce referential integrity by implementing a nullifying
delete. In this example, when a user deletes a city from the CITIES relation, the same

city is set to null in the TOURISM and SKI_AREAS relations.

define trigger nullifying delete for cities
post erase O:
begin
for t in tourism with t.city = old.city
and t.state = old.state
modify t using
t.city = null;

7-16 Preserving Data Integrity

Using Triggers

end_modify;
end_for;
for s in ski_areas with s.city = old.city
and s.state = old.state
modify s using
s.city = null;
end_modify;
end_for;
end;
end_trigger;

Example 5 — Returning Multiple Messages

This example shows how to define a trigger that returns multiple messages. This exam-
ple expands on Example 3, Implementing a Restricting Delete.

define trigger restricting_delete for cities
pre erase 0:
begin
for t in tourism with t.city = old.city
and t.state = old.state
abort 1;
end_for;
for s in ski_areas with s.city = old.city
and s.state = old.state
abort 2;
end_for;
end;
end_trigger
message 1l: "This city cannot be deleted, because it exists
in the TOURISM relation",
message 2: "This city cannot be deleted, because it exists
in the SKI_AREAS relation.";

Example 6 — Implementing Full Referential Integrity

This example shows how to enforce referential integrity on store, modify, and erase

operations for the CITIES and TOURISM relations. In this example:

* The store trigger on the TOURISM relation ensures that the city name and state
code on the new TOURISM record are valid before it allows the store to take place.

¢ The modify trigger on the TOURISM relation checks to see if a user is modifying
the city name. If this is the case, the trigger ensures that the new city name is val-
id before it allows the modify to take place.

Preserving Data Integrity 7-17

Using Triggers

7-18

The first modify trigger on the CITIES relation checks to see if a user is modifying
the city name or state code of a state capital. If this is the case, the operation is
aborted.

The second modify trigger on the CITIES relation is activated only if the modify
of the CITIES relation takes place. It cascades the modify to the CITY field in the
TOURISM relation.

The erase trigger on the CITIES relation checks to see if a user is erasing a state
capital. If this is the case, the operation is aborted.

If the city being erased is not a state capital, the trigger then deletes all records in
the TOURISM relation associated with that city.

/* Pre store trigger for TOURISM */
define trigger valid_store for tourism
pre store O:
begin
if not any ¢ in cities with c.city = new.city
and c.state = new.state
abort 1;
end;
end_trigger
message 1: "Invalid city.";

/* Pre modify trigger for TOURISM */
define trigger valid_modify for tourism
pre modify O:
begin
if (new.city ne old.city)
or (new.state ne old.state)
begin
if not any ¢ in cities with c.city = new.city
and c.state = new.state
abort 1;
end;
end;
end_trigger
message 1: "Invalid city.";

/* Pre modify trigger for CITIES */
define trigger retain_capitals for cities
pre modify O:
begin
if (new.city ne old.city)
or (new.state ne old.state)

Preserving Data Integrity

Using Triggers

begin
for st in states with st.capital = old.city
and st.state = old.state
abort 1;
end_for;
end;
end;
end_trigger
message 1l: "You can’‘t modify a state capital.";
/* Post modify trigger for CITIES */
define trigger cascading _modify for cities
post modify 0:
begin
if (new.city ne old.city)
or (new.state ne old.state)
begin
for t in tourism with t.city = old.city
and t.state = old.state
modify t using
t.city = new.city,
t.state = new.state;
end_modify;
end_for;
end;
end;
end_trigger;

/* Pre erase trigger for CITIES */
define trigger cascading_erase for cities
pre erase 0:
begin
for st in states with st.capital = old.city
and st.state = old.state
abort 99;
end_for;
for t in tourism with t.city = old.city
and t.state = old.state
erase t;
end_for;
end;
end_trigger
message 99: "You can’t erase a state capital.";

Preserving Data Integrity 7-19

For More Information

For More Information

For more information on using triggers, refer to the following entries in the DDL
Reference:

e define trigger
¢ modify trigger
e delete

For more information on defining unique indexes, refer to Chapter 6, Defining Views
and Indexes, and to the following entries in the DDL Reference:

e define index
¢ modify index
e delete

For more information on defining validation criteria for fields, refer to Chapter 4,
Defining Fields, and to the following entries in the DDL Reference:

e define field
e modify field
e delete

7-20 Preserving Data Integrity

Chapter 8
Securing Data and Metadata

This chapter describes how to secure data and metadata by using InterBase security
classes. It presents an overview of the security class mechanism and then describes
how to define a security class, assign a security class to an object, design a security
scheme, and change security definitions.

InterBase also allows you to secure specific relations from unauthorized access by
using the SQL grant and revoke statements. This security scheme is discussed in the
chapter on defining metadata with SQL in the Programmer’s Guide.

Overview

By default, data and metadata on an InterBase database are not secured. When you
first create a database, users have unlimited access to its relations, views, and fields.

InterBase provides a security scheme that is based on the concept of an object. An
object is a database component that can be protected from individual users and groups.

Securing Data and Metadata 8-1

Overview

The following database components are objects:
e The database itself

¢ Relations
e Views
e Tields in a relation or view

InterBase security operates within the context of file-level security. Users must have
write access to the database file in order to access the data in the database.

Securing an Object

You secure an object from unauthorized access by assigning it a security class. This
automatically prevents a user from accessing the object unless the user has been
authorized to use that security class.

Security classes protect an object from unauthorized access through any interface,
including gdef, qli, GDML, and SQL. They also prevent unauthorized users from
accessing the object’s definition through system relations.

Note

You can’t assign a security class to relations created with the SQL
create table command. Instead, you control access to these rela-
tions by using the SQL grant and revoke statements.

Granting Access Privileges

You control what kind of access the user has to an object by granting that user certain
access privileges. Table 8-1 describes the privileges you can grant for a particular
object.

Table 8-1. Access Privileges

Privilege What users can do

Read (r) Read data from the object.

Write (w) Write data to the object and delete the object.
Delete (d) Delete the object’s definition.

Control (¢) Change, but not delete the object’s definition.
Protect (p) Change the object’s security class

8-2 Securing Data and Metadata

Overview

The InterBase Security Hierarchy

InterBase security operates in a hierarchical fashion, with the database being the high-
est level object and the field the lowest. Higher-level access controls always override
lower-level ones.

Figure 8-1 illustrates this hierarchy.

Figure 8-1. The InterBase Security Hierarchy

Database

Relation View

Field

For example, users can’t store data in a relation unless they have write privileges for
the:

¢ Database that contains the relation
¢ Relation itself

Securing Data and Metadata 8-3

Defining a Security Class

Defining a Security Class

You define a security class by using the define security_class statement. You use
this statement to name the security class and to define the access of indvidual users,
groups, and views. This definition is called an access control list or an ACL.

When you define a security class, be sure you give at least one user full access privi-
leges (rwdcp). If you don’t do this, you can lock access to associated objects. This is espe-
cially important if you plan to associate the security class with a database.

If You Lock Yourself Out

If you do lock yourself out of a database, here’s what to do:
¢ On Apollo systems, login as locksmith and fix the problem.

¢ On UNIX systems, login as superuser and fix the problem.

¢ On VMS systems, use the bypass privilege to override security and fix the prob-
lem.

Required Authority

To define a security class, you must have write privileges for the system relation RDB$-
SECURITY_CLASSES. This relation is described in Appendix A, System Relations.

Example of Defining a Security Class

Suppose you want to secure a personnel database containing confidential salary infor-
mation in the EMPLOYEE relation. You want to grant the following types of access:

1. The Vice President of Personnel, user ppn, should have complete access to salary
information, including the authority to secure this information and to change its
metadata.

2. Other Personnel employees should have read access to salary information.

3. No one else should have access to salary information.

There are two ways you can implement this security scheme.

8-4 Securing Data and Metadata

Defining a Security Class

Method 1

One way to implement this scheme is to define a security class that gives access privi-
leges to the appropriate individuals and groups. For example, to define the security
class on an Apollo system, type:

modify database ’‘personnel.gdb’
define security_class salary_access
{This security class is used to secure salary data from
unauthorized access}
ppn.personnel rwdcp,
% .personnel r;

To define this security class under UNIX and VMS, type:

modify database ‘personnel.gdb’
define security_class salary_access
{This security class is used to secure salary data from
unauthorized access}
[201,114] rwdcp,
[201,*] r;

Later on you would assign this security class to the SALARY field in the personnel
database, as shown later in this chapter.

Note

When you define the security class under UNIX and VMS, you
must enclose the group and user codes in brackets. The syntax for
the UNIX grantee for the define security_class statement is
shown below. The "groupid" and "userid" must be numbers.

UNIX: grantee:==[groupid,userid]

Method 2

Another way to implement this scheme is to define a security class that gives full access
privileges to user ppn and read privileges to a view.

For example, to define this security class on an Apollo system, type:

modify database ’‘personnel.gdb’
define security_class salary_access
{This security class is used to secure salary data from
unauthorized access}
ppn.personnel rwdcp,
view payroll r;

Securing Data and Metadata 8-5

Defining a Security Class

To define this security class under UNIX and VMS, type:

modify database ’‘personnel.gdb’
define security_class salary_access
{This security class is used to secure salary data from
unauthorized access}
[201,114] rwdcp,
view payroll r;

Later on, you would create a PAYROLL view of the EMPLOYEE relation and give pay-
roll employees read access to the view. These employees would then have read access
to the SALARY field.

The use of views in a security scheme is discussed later in this chapter.

Considerations for Defining Security Classes

The following considerations apply to defining security classes:

* You should always define your ACLs by using the conventions of the system on
which the database resides. For example, you should use VMS user identification
conventions when you define a database that resides on a VMS system.

Note

The security examples in the remainder of this chapter use Apollo
user identification conventions.

* When you access a database from a node on a different system, InterBase auto-
matically translates the ACLs on that database to ACLs that your system under-
stands.

¢ When you use gdef extract to copy a database definition to a node on a different
system, or when you use gbak to back up and restore your database to a node on
a different system, you must change the ACLs. If you don’t change the ACLs, gdef
could fail.

8-6 Securing Data and Metadata

Assigning a Security Class to an Object

Assigning a Security Class to an Object

You assign a security class to an object by including the security class in the object’s
definition. For example, to assign the salary_access security class to the SALARY field
in the personnel database, type:

modify database ‘personnel.gdb’;
define field salary

{used to hold salary informatjon}

security_class salary_access LI

To assign a security class to an object, you must have protect privileges for that object.

Note
You can assign only one security class to a particular object.

Securing Data and Metadata 8-7

Designing a Security Scheme

Designing a Security Scheme

The InterBase security system gives you the capability of making your security scheme
as granular as necessary. You can:

¢ Define as many security classes as you like.
e Associate one security class with any number of objects.

¢ Include any number of access definitions within one security class.

You can also achieve varying degrees of granularity by using views in your security
scheme.

Note

Users can change security class definitions by manipulating the
RDB$SECURITY_CLASSES systems relation. To prevent this ca-
pability, be sure to secure this relation.

This subsection tells you how to order your access definitions when you design a secu-
rity scheme. This is followed by a discussion of views and examples of various security
implementations.

Ordering Your Access Definitions

InterBase evaluates access definitions in the order they appear. Because of this, you
need to order these definitions from most specific to least specific. If you don’t order def-
initions in this way, you might get unexpected results.

Note

You don’t have to be concerned about ordering access definitions, if
your database resides on an Apollo. In this case, InterBase auto-
matically orders the definitions most specific to least specific, re-
gardless of the sequence in which they are entered.

For example, suppose you want to secure the customer relation and provide the follow-
ing accesses:

* The sales manager, user jkw, should have unlimited access to the relation.

¢ Each sales person should have read, write access to their own customer informa-
tion. (This can be done through a view.)

¢ Each sales person should have read access to all customer information.

8-8 Securing Data and Metadata

Designing a Security Scheme

Now, suppose you assign this security class to the customer relation:

modify database ’‘customer.gdb’;
define security_class customer_access
{This security class is used to secure customer data from
unauthorized access}
%.%.sales_people r,
view my_customer rw,
jkw.manager.sales_people rwdcp;

With this definition, you probably will not get the results you want. When the sales
manager tries to access the customer relation, the manager is granted read access only.
This is because the manager’s id matches the first access definition. The same holds
true when an individual sales person tries to access the relation.

The correct security class definition would look like this:

modify database ‘customer.gdb’;
define security_class customer_access
{This security class is used to secure customer data from
unauthorized access}
jkw.manager.sales_people rwdcp,
view my_customer rw,
%$.%.sales_people r;

Using Views

You can use views to grant a user or group access to an object. If a user has access to a
view, that user may be able to access one-or more base relations through the view. The
same holds true for a group.

Granting access through a view works as follows:

e Ifthe view is not secured, all users can access the base relations through the view.
Users are automatically granted the same privileges that the view has for the base
relations.

For example, the security class LIMITED_ACCESS gives read access of the EM-
PLOYEE relation to the view UNDERPAID_EMPLOYEES. Since
UNDERPAID_EMPLOYEES is not secured, all users can use this view to read
certain fields in the EMPLOYEE relation:

define security_class limited_access
ppn.personel rwdcp,
view underpaid_employees r;

modify relation employee

Securing Data and Metadata 8-9

Designing a Security Scheme

security_class limited_access;

define view underpaid_employees
of emp in employee with emp.salary < 2000
emp.emp_1id,
emp.last_name,
emp.first_name;

e Ifthe view is secured, only users authorized to access the view can use it to access
the base relation. These users are granted whatever privileges form the intersec-
tion between the user’s access to the view and the view’s access to the base rela-
tion.

The following diagram and table illustrate this concept.

User Privileges

User’s Access View’s access
to view to base relation

Table 8-2. Using a View to Access a Relation

User’s Access View’s Access What the User

to View to Base Relation Can Do

r'w W Read and write to the base relation
rw r Read the base relation

r rw Read the base relation

8-10 Securing Data and Metadata

Designing a Security Scheme

Examples

The examples below illustrate various security implementations.

Example 1

Consider the following scenario for an organization with a highly stratified personnel
policy:
1. The vice president of personnel can read and update any personnel information.

2. Other employees can know only the salary scales of jobs within two job levels of
their own.

3. No one can know anyone’s salary except his or her own.

Payroll clerks must be able to enter all information about every job and every em-
ployee, except the employee’s review.

5. Only the personnel vice president can update reviews.
Any employee can read his or her own review.

7. Anybody can get a list of employee names.

The following database definition follows all seven rules. If you try the example,
remember to add your own user identification, giving yourself the privileges of the per-
sonnel vice president.

Note

The database includes a field USER_NAME that is used in con-
junction with a field called RDB$USER_NAME. You can use this
expression in triggers, views, and validation.

define database "emp.gdb";

define field last_name varying [20];

define field first_name varying [10];
define field user_name varying [20];

define field salary long scale -2;

define field review blob segment_length 80;
define field job varying [207];

define field job_code short;

define security_class exclusive
{ for protecting rdb$security_classes
and reviews }
ppn.vice_president.personnel rwdcp,
view censored_employees r,

Securing Data and Metadata 8-11

Designing a Security Scheme

8-12

define security_class personnel

{ to give reasonable access to reasonable

people, if they ask for the right things }

ppn.vice_president.personnel rwdcp,
view censored_employees r,

view emp_names r,
clerk.payroll.personnel w;

define relation jobs
security_class personnel

{ list of job names, job codes, and salary

ranges for every job in the company.}

job,

job_code,

low_salary based on salary,
high_salary based on salary;

define relation employees
security_class personnel

{ Information in this relation would cause

a riot if the other vice presidents saw
it, and a local massacre if the president

finds out... }
last_name,
first_name,
user_name,
salary,
job_code;

define relation reviews
security_class exclusive
{ Very hush hush. }

last_name,

first_name,

review;

define view censored_employees of

e in employees cross r in reviews over
last_name, first_name with e.user_name

{ Each person can look at his own
information but no one else’s.}
.last_name,
.first_name,
.user_name,
.salary,

™ ® ® O

Securing Data and Metadata

rdbSuser_name

Designing a Security Scheme

e.job_code,
r.review;

define view emp_names of e in employees
{ Everybody can get a list of employees }
name computed by (e.last_name | ', ' | e.first_name);

define view censored_jobs of
j in jobs cross e in employees with
e.user_name = rdbSuser_name and
j.job_code between (e.job_code - 2) and
(e.job_code + 2)
{ Each person can see the salary ranges for
jobs within two levels of his own }
.job,
.job_code,
.low_salary,
.high_salary;

{ G R W PR P W Y

modify relation rdb$security_classes security_class exclusive;

Example 2

This security scheme provides the following access to the SALARY field in the
EMPLOYEES relation:
¢ The vice president of personnel has complete access to the salary field.

¢ Personnel managers have read and write access to the SALARY field.
e Members of the payroll department have write access to the SALARY field.

The other fields in the EMPLOYEES relation are not protected.

define security_class write_no_read
{ more access as you move up the corporate ladder }
%.vp.personnel rwdcp,
% .management .personnel, rw
% .payroll.personnel; w

define relation employees
last_name,
first_name,
emp_number,
salary long
security_class write_no_read;

Securing Data and Metadata 8-13

Changing Your Security Scheme

Changing Your Security Scheme

Once you have implemented a security scheme you can easily change it if necessary.
Changing a security scheme involves modifying security class definitions and assign-
ments. Instructions for doing this are presented below.

Modifying a Security Class Definition

You modify a security class by deleting the security class and redefining it. For exam-
ple, to modify the security class SALARY_ACCESS so that all personnel employees
have at least read access to salary information, type:

modify database ’'personnel.gdb’
delete security_class salary_access;

define security_class salary_access

{This security class is used to secure salary data from
unauthorized access}

ppn.vp.personnel rwdcp,
%.payroll.personnel rw,
%.%.personnel r;

Modifying a Security Class Assignment

You modify a security class assignment by using the appropriate modify statement to
delete a security class from a database, relation, field, or view definition.

For example, to delete the association between the security class SALARY_ACCESS
and the salary field, type:

modify database ’'personnel.gdb’;

modify field salary
drop security_class;

8-14 Securing Data and Metadata

For More Information

For More Information

For more information on security classes, refer to the discussion of the following state-
ments in the DDL Reference.

¢ define database

¢ define field

¢ define relation

e define security_class
¢ define view

o delete

¢ modify database

e modify field

¢ modify relation

e modify view

For information on SQL security, refer to the chapter on defining metadata with SQL
in the Programmer’s Guide.

Securing Data and Metadata 8-15

8-16

Chapter 9
Creating User-Defined Functions

This chapter discusses how to code, define, and access user-defined functions. It also
discusses how to create a function library for storing the functions.

Overview

User-defined functions are executable routines that you define to the database. A user-
defined function is a function in the strict theoretical sense. It takes zero or more argu-
ments and returns a single value.

You can access user-defined functions either through qli or through a host-language
program that contains embedded GDML statements. You can also access user-defined
functions through gdef and include them in computed field definitions and trigger def-
initions.

You can create user-defined functions to do any number of conversion and calculations.
For example, you can create a function that changes the case of text from lower case to
uppercase. Or, you can create a function that calculates the absolute value of a given
input value.

Creating User-Defined Functions 9-1

Overview

To create and use user-defined functions, follow these steps:

1. Write the functions and compile them into object code.

2. Define the functions to the database.

3. Create the function library and make it available to InterBase at run time.
4. Access the functions from qli or a host-language program.

Each of these functions are described in the following sections.

9-2 Creating User-Defined Functions

Writing and Compiling Functions

Writing and Compiling Functions

You can write a user-defined function by using any host language callable from C. The
example below shows how to write four user-defined functions in C:

The first function returns the absolute value of a number passed as an input ar-
gument.

The second function takes a text string passed as an input argument and converts
it to upper case. It then returns the converted string to the calling program.

The third function takes two numbers as input arguments and returns the num-
ber that’s of greater value.

The fourth function returns the current time to the calling program. This function
does not expect an input argument.

These functions are coded in a single file called udf.c. For additional examples of func-
tions, see the InterBase examples directory.

#include <math.h>
#include <ctype.h>
#include <time.h>

/* variable to return values which is global so it stays
around after the function invocation exits */

static char buffer[256];
static double retval;

fn_abs() - returns the absolute value of its argument.
define function abs
module_name ’‘'FUNCLIB’
entry_point ‘FN_ABS’
double by value,
double by value return_value

:‘.::::==:::::‘:::::=====::::___::::==========:====:=:==:==:=:=:*/
double *fn_abs(x)
double *x;
{
retval = fabs(*x);
return retval;
}
/* fn_upper () - Converts a null-terminated string to upper case
*/

Creating User-Defined Functions 9-3

Writing and Compiling Functions

char *fn_upper (s)
char *s;

{

char *buf;

for (buf = buffer; *s;)

if (*s >= ’a’ && *s <= 'z')
*buf++ = toupper (*s++);
else
*buf++ = *s++;
*pbuf = '\0’;

return buffer;

}
/* fn_max () - Returns the greater of its two arguments */

double fn_max(a,b)
double *a, *b;

{

return (*a > *b) ? *a : *Db;

}

/* fn_time() - Returns the current time */

char *fn_time()

{

int i, time_int;

char *buf, *end, *time_str;

strcpy (buffer, "The time is now ");
buf = buffer + strlen(buffer);

time (&time_int);
time_str = ctime (&time_int) + 11;

for (i = 0; 1 < 8; i++)
*buf++ = *time_str++;

for (end = buffer + sizeof (buffer); buf < end;)
*pbuf++ = 7,

9-4 Creating User-Defined Functions

Writing and Compiling Functions

return buffer;

}

You compile these functions as follows:
e Under Apollo SR9.7, type:

cc -c udf.c

Under Apollo SR10.0, type:

cc -c¢ -W0,-pic udf.c

Under SunOS 4.0, type the following for inclusion in a shareable object library:

cc -c¢ -pic udf.c

Type the following for inclusion in a non-shareable object library:

cc -c udf.c

Under UNIX systems that don’t support dynamic libraries, type:

cc -c udf.c

Under VMS, type:
cc/gfloat udf.c

These commands create an object module called udf.o, except under VMS, where the
output file is called udf.obj.

Creating User-Defined Functions 9-5

Defining Functions to the Database

Defining Functions to the Database

You define a function to the database by specifying the following information:

9-6

Function name.
Name of the library where the function is stored.
Entry point in the code.

Datatype of each argument that gets passed to the function. You can specify any
valid datatype except for the array datatype. You can also specify a cstring
datatype to represent arguments that are null terminated strings.

If you use this datatype, your program can pass character data to the function as
a null terminated string. If you don’t use this datatype, your program has to pad
the full length of the string with spaces.

The cstring datatype is valid for user-defined functions only. It is not valid in a
field definition.

The argument is passed to the function as a pointer (by reference). This is deter-
mined by the function code and the calling convention of the language being used.
If the function expects to see pointer, pass the input argument by reference.

Some languages, like Pascal, always expect their arguments to be passed by ref-
erence, no matter how the argument is declared in the function. For more infor-
mation on passing arguments, refer to the document for your operating system
that discusses conventions for calling other languages from C .

You shouldn’t attempt to modify an argument in a user-defined function, even if
the argument was passed by reference. The reference option enables users to in-
form the database of their language’s calling conventions. It was not designed to
give users read/write arguments.

An indicator to mark a single argument as the return argument.

The datatype of the return argument. You can specify any valid datatype except
for the array datatype. You can also specify a cstring datatype to represent an ar-
gument that is a null terminated string.

If you use this datatype, the function can pass character data to the program as a
null terminated string. If you don’t use this datatype, the function has to pad the
full length of the string with spaces.

The cstring datatype is valid for user-defined functions only. It is not valid in a
field definition.

The argument is passed to the calling program as a pointer. This is also deter-
mined by the function code and the calling convention of the language being used.

Creating User-Defined Functions

Defining Functions to the Database

* A query name that can be used when the function is accessed through qli. This
information is optional. If you don’t specify a query name, you can access the func-
tion by using its function name.

¢ User defined functions can be used in a valid_if clause.

When you define a function to the database, you can specify as many input arguments
as you need. You must specify exactly one return argument. You designate an argu-
ment as a return argument by attaching the return_value option to the argument
specification.

The definitions for the functions coded earlier in this chapter are shown below:
modify database ‘atlas.gdb’;

define function ABS
module_name ’FUNCLIB’
entry_point ’'FN_ABS’
double by reference,
double by value return_value;

define function UPPER
module_name ‘FUNCLIB’
entry_point ’‘FN_UPPER’
cstring([256] by reference return_value,
cstring[256] by reference;

define function MAXNUM
module_name ‘FUNCLIB’
entry_point ‘FN_MAX'
double by reference,
double by reference,
double by value return_value;

define function TIME
module_name ‘FUNCLIB’
entry_point ‘FN_TIME’
char([35] by reference return_value;

Notes

For Apollo SR9.7 systems, you need to uppercase the library name
specified in the function definition. This ensures that the name
matches the bind output.

For Apollo SR10.0 systems, you need to lowercase the entry point
specified in the function definition.

Creating User-Defined Functions 9-7

Defining Functions to the Database

If you need to delete one of the functions you just defined, use the delete statement:
delete function ABS; ’

If you need to modify one of the functions you just defined, delete the function and then
redefine it:

delete function ABS;
define function ABS
module_name ’'SAMPLIB’
entry_point ‘FN_ABS’
double by reference,
double by value return_value;

To view the definition of a function, use the qli show function statement. This state-
ment is described in the QLI Reference.

9-8 Creating User-Defined Functions

Creating a Function Library

Creating a Function Library

You can create a function library on any platform that InterBase supports. You should
create one function library for each platform on which the database involved resides.

To modify an existing function library function on all platforms:
¢ Compile the function according to the instructions for your platform.

* Include all object files previously included in the library in addition to the newly-
created object file in the command line when creating the function library.

Note

On some platforms, it is possible to link object files directly with ex-
isting libraries. For more information, consult the documentation
for your operating system.

Instructions for creating function libraries and making them available to InterBase on
each supported platform are presented below.

Creating a Function Library Under Apollo

To create a function library under Apollo SR9.7 or SR10.0, use the bind utility to bind
the object you just created into a function library. When you do this, you must include
a -mark option for each function entry point.

For example, to bind udf.o into a library named funclib, type:

% bind udf.o -bin funclib -mark fn_abs -mark fn_upper -

-mark fn_max -mark fn_time;

If you want to provide access to the function library locally, use the inlib command to
make the library available to the process you are using:

% inlib funclib
If you want to access the function library through the remote server, install the func-
tion library as a global library on each node. This ensures the library will be available

to all processes that need to access it:
* To do this under Apollo SR9.7, rebind the gdslib to inlib the function library:

% cd /interbase/lib
% cp gdslib gdslib.orig
% bind -inlib funclib -bin gdslib gdslib.orig

¢ To do this under Apollo SR10.0, add the function library to the /etc/sys.conf file
and perform a soft reboot of the system.

Creating User-Defined Functions 9-9

Creating a Function Library

Creating a Function Library Under SunOS 4.0

To create a function library under SunOS 4.0 by using shareable libraries:

1. Log on to the node where the database resides.

2. Add the name, entry point, and module name of each function to the table ISC_
FUNCTIONS in /usr/interbase | examples [functions.c. Later on, when you define
the function to the database, be sure to specify the module name and entry point
exactly as they're specified here.

Note
The function name you enter in ISC_FUNCTIONS must be unique.
ISC_FUNCTIONS provides a template for you to follow. The first time you open
the file, you’ll see the following description:

typedef struct {

char *fn_module;
char *fn_entrypoint;
FUN_PTR fn_function;

}FN;

static test();

static FN isc_functions [] = {
"test_module", "test_function", test,
0, 0, 0};

To fill in the ISC_FUNCTIONS table for the FN_ABS, FN_UPPER, FN_MAX, and
FN_TIME functions, type:

extern double fn_abs();
extern char *fn_upper ();
extern double fn_max ();
extern char *fn_time ();

static FN isc_functions [] = {
"test_module", "test_function", test,
"FUNCLIB", "FN_ABS", (FUN_PTR)fn_abs,
"FUNCLIB", "FN_UPPER", (FUN_PTR)fn_upper,
"FUNCLIB", "FN_MAX", (FUN_PTR)fn_max,
"FUNCLIB", "FN_TIME", (FUN_PTR)fn_time,
0, 0, 0};
Note

Don’t delete the final line of zeroes. They signal the end of the table.

9-10 Creating User-Defined Functions

Creating a Function Library

3. Compile functions.c:

% cc -c -pic functions.c

4. Copy the shareable library /usr/interbase/lib/gdsflib.s0.0.0 to your working di-
rectory:
% cp /usr/interbase/lib/gdsflib.s0.0.0 new_gdsflib

5. Add the object files udf.o and functions.o to the shareable library:

% 1d -o new_gdsflib -assert pure-text udf.o functions.o

To make the function library available under SunOS 4.0 by using shareable libraries:

6. Set up an environment variable to force the use of the new shareable library for
testing purposes:

% setenv LD_LIBRARY_PATH /absolute directory path of
A new_gdsflib
7. Link /usr/interbase/lib/gdslib.so.0.0 to your working directory:
% 1n -s /usr/interbase/lib/gdslib.s0.0.0 libgdslib.so.0.0
8. Link new_gdsflib to the filename libgdsflib.so.0.0. This enables InterBase to find
new_gdsflib at run-time:
% 1ln -s new_gdsflib libgdsflib.so.0.0

9. Test your functions.

10. Copy the new shareable library, new_gdsflib, to /usr/interbase/lib on the node
where the database resides:

% cp new_gdsflib /usr/interbase/lib/gdsflib.so0.0.0

To create a function library under SunOS 4.0 without using shareable libraries, follow
the instructions below for creating the function library under other UNIX platforms.

Creating a Function Library Under Other UNIX platforms

To create a function library under SunOS 3.5, HP-UX, and Ultrix:
1. Log on to the node where the database resides.

2. Add the name, entry point, and module name of each function to the table ISC_-
FUNCTIONS in /usr/interbase /examples/functions.c.

For example, to fill in the ISC_FUNCTIONS table for the functions you coded ear-
lier, type:

static FN isc_functions [] = {

Creating User-Defined Functions 9-11

Creating a Function Library

"test_module", "test_function", test,
"FUNCLIB", "FN_ABS", abs,
"FUNCLIB", "FN_UPPER", upper,
"FUNCLIB", "FN_MAX", maxnum,
"FUNCLIB", "FN_TIME", time,

0, 0, 0};

3. Compile functions.c without using the pic switch:
% cc -c functions.c
4. Concatenate functions.o with the file that contains the function code. In this ex-
ample, the file is called udf.o:

% 1d -r -o funclib.o functions.o udf.o

5. Copy the InterBase back end to your working directory:
% cp /usr/interbase/lib/gds_b.a new_gds_b.a
6. Remove the old functions.o from the INTERBASE back end using the ar utility
when building user-defined functions:

% ar dv new_gds_b.a functions.o

7. Add the function library to the new back end:

% ar rls new_gds_b.a funclib.o

8. Reinitialize the symbol table for the archive:
% ranlib new_gds_b.a
To make the function library available under these operating systems, you need to
build the function library into the pipe server by following these steps:
1. Link the InterBase back end to the pipe server:
% cc /usr/interbase/lib/gds_pipe.a new_gds_b.a -o gds_pipe
Depending on your platform and the type of functions you have defined, you may
also need to link with the math library provided with your platform.

2. Set up an environment variable to force the use of the new pipe server for testing
purposes:

% setenv GDS_SERVER /absolute directory path of your
working directory/gds_pipe
3. Test your functions by using gqli or a GDML application program. Information on
accessing functions is presented later in this chapter.

4. When you are satisfied with how your functions work, save the original version of
the pipe server and the original version of gds_b.a:

9-12 Creating User-Defined Functions

7.

Creating a Function Library

% cp /usr/interbase/bin/gds_pipe
/usr/interbase/bin/gds_pipe.bak

% cp /usr/interbase/lib/gds_b.a /usr/interbase/lib/gds_b.bak

Replace the original version of the pipe server with the pipe server you created in
Step 1:

% cp gds_pipe /usr/interbase/bin/gds_pipe

Copy the new InterBase back end to /usr/interbase/lib:
% cp new_gds_b.a /usr/interbase/lib/gds_b.a

Relink any applications that were previously linked against gds_b.a.

If you want to be able to access your functions remotely, you must also rebuild the inet
server so that it incorporates the new functions. To do this, follow these steps:

1.

Link gds_inet_server to the pipe server:
% cc /usr/interbase/lib/gds_inet_server.a
new_gds_b.a -o new_gds_inet_server
Test your functions remotely by using qli or a GDML application program. Infor-
mation on accessing functions is presented later in this chapter.

When you are satisfied with how your functions work, save the original version of
the inet server:

% cp /usr/interbase/bin/gds_inet_server.a
/usr/interbase/bin/gds_inet_server.bak
Replace the original version of the inet server with the inet server you created in
Step 1:

% cp new_gds_inet_server /usr/interbase/bin/gds_inet_server

Creating a Function Library Under VMS

To create a function library under VMS, use a linker options file to make the function
library entry points universal:

link/share=funclib.exe udf, sys$input/opt
psect_attr = errno, noshr
psect_attr = stderr, noshr
psect_attr = stdin, noshr
psect_attr = stdout, noshr N
psect_attr = sys_nerr, noshr
psect_attr = vaxc$errno, noshr

Creating User-Defined Functions 9-13

Creating a Function Library

universal = fn_abs
universal = fn_upper
universal = fn_max
universal = fn_time

By not using shared writeable psects, you avoid having to use the install utility to
install the shared function library. For more information on shareable executables,
refer to the VAX Linker documentation.

To make the function library available under VMS, do any of the following:
* Copy the shareable executable to the sys$share directory:

$ copy funclib.exe sysS$Sshare:

* Make sys$share a list of pathnames that includes the directory containing the
function library:

$ define sysSshare Smydisk:[mydir], sys$Ssysroot:[syslib]

* Define a logical name that has the same name as the function library module:

$ define funclib Smydisk: [mydir]funclib.exe

9-14 Creating User-Defined Functions

Accessing Functions

Accessing Functions

Instructions for accessing user-defined functions through qli and host-language pro-
grams are presented below.

Accessing Functions From Qli

To access a user-defined function from gli, name the function, and enclose the input
arguments in parentheses.
For example, to access the ABS function from qli, type:

QLI> ready atlas.gdb;
QLI> print abs(-3);
3

QLI> declare foo double;

QLI> foo = -3;
QLI> print abs(foo);
3

To access the MAXNUM function from qli, type:

QLI> ready atlas.gdb;
QLI> print maxnum (2, 5);
5

Accessing Functions From a Host-Language Program

To access a function from a host-language program, name the function and enclose the
input arguments in parentheses. The function can only be accessed from a GDML
record selection expression.

The example below shows how to access the ABS function from a C program:

database atlas = filename "atlas.gdb"

main ()

{

ready atlas;
start_transaction;

printf ("This program prints the states that have changed in
population\n") ;

Creating User-Defined Functions 9-15

Accessing Functions

printf ("by more than 250,000 people between 1970 and
1980.\n\n") ;

printf ("State census_1970 census_1980\n\n") ;
for p in populations with
abs (p.census_1970 - p.census_1980) > 250000 sorted by
descending abs(p.census_1970 - p.census_1980)
printf ("%4s $10d $10d\n", p.state,
p.census_1970, p.census_1980);
end_for;
rollback;
finish;

}

Accessing the Functions From Gdef

You can access a user-defined function in a computed field definition and a trigger def-
inition.

For example, the statement below uses the ABS function to compute the absolute value
of the difference between the 1970 population and the 1980 population:

define view pop_change of p in populations
change computed by
(abs (p.census_1970 - p.census_1980));

This statement uses the UPPER function to convert new state names to upper case:

define trigger up_name for states
pre store 0: ’

new.state = upper (new.state) ;
end_trigger;

9-16 Creating User-Defined Functions

For More Information

For More Information

For more information on writing user-defined functions and accessing them from
a host-language program, refer to the chapter on retrieving data with GDML in the

Programmer’s Guide.

Creating User-Defined Functions 9-17

9-18

Chapter 10
Creating Event Alerters

This chapter introduces the InterBase event alerter mechanism, describes how this
mechanism works, and discusses event transaction control. For an in-depth discussion
of programming with events, refer to the chapter on programming with events in the
Programmer’s Guide.

Overview

An event alerter is a mechanism that notifies an interested application when a specific
event has taken place. An event can be any type of database insertion, modification, or
deletion.

For example, suppose an investment bank wants to track changes to the stocks in its

portfolio. The bank has an application program that inputs stock prices from the ticker
and updates the price of each stock in the database. The bank now needs another pro-
gram that determines whether to buy or sell stock based on changes to the stock price.

Creating Event Alerters 10-1

Overview

You can use the event alerter mechanism to notify the program when specified changes
take place. The program can then act on these changes appropriately.

10-2 Creating Event Alerters

What Happens on the Database Side

What Happens on the Database Side

To give this program timely notification of meaningful stock price changes, you can
define an event in the STOCKS relation of the database. This event keeps track of stock
changes and posts to all interested programs when the price change exceeds 1%.

You define and post an event in the database by using a trigger. The trigger must do
the following:

* Identify the event by specifying a unique string

* Specify the conditions under which the event manager will notify interested pro-
grams that the event has occurred

For example, to post an event that monitors a 1% change in the price of stock, type:

define trigger stock_event for stocks
post modify O:
if new.price / old.price > 1.01 or
new.price / old.price < .99
then post new.company;
end_trigger;

This trigger checks to see if the change in stock prices exceeds 1%. When the change
does exceed 1%, the trigger posts the event. This consists of passing the name con-
tained in its argument to the Interbase event manager. The event manager then checks
to see if the name is in the event table, which lists the events in which active programs
have registered interest.

Triggers that post events can differ from this example in a number of ways:

* You can use as much or as little conditional logic in the trigger as you need to qual-
ify the event. However, a trigger that contains no conditional logic puts the burden
of qualifying the event back onto the program. Avoid this type of inefficiency.

* Thetrigger can also contain several conditions, each of which, if satisfied, can post
a different event.

* You can define the trigger with any valid characteristics, not just the defaults
used here. You can also make it fire on other than a modify. For more informa-
tion on defining triggers, refer to Chapter 7, Preserving Data Integrity.

* The argument to the post verb can be any alphanumeric name up to 31 characters
in length. The event manager looks for an event that has same name.

Creating Event Alerters 10-3

What Happens on the Program Side

What Happens on the Program Side

Programs can wait on many events and can choose whether to wait on them synchro-
nously or asynchronously:

If a program chooses to wait synchronously, the program gives control to
InterBase. Control gets returned when an event is posted.

This type of wait is supported through two GDML statements:

— EVENT_INIT declares the names of events in which the program is interest-
ed.

— EVENT_WAIT does the actual waiting, returning control when one of the de-
clared events occurs.

If a program chooses to wait asynchronously, the program keeps control while
waiting. This enables the program to do other processing.

This type of wait is supported only through InterBase access method calls.

Once a program is notified that an event has taken place, the program can check the
gds_8$events array to see which event it was.

The example below shows an embedded GDML program that waits synchronously for
the STOCK_EVENT event to be posted. When this event occurs, the program prints
the value of the changed stocks:

10-4

#include "/interbase/include/gds.ins.c"
DATABASE DB = "stocks.gdb";

#define number_of_stocks 5
char *event_names [] = { "APOLLO", "DEC", "HP", "IBM", "SUN" };

main() {
int 1;
READY DB;

EVENT_INIT PRICE_CHANGE ("APOLLO", "DEC", "HP", "IBM", "SUN"
) ;

while (1) {

EVENT_WAIT PRICE_CHANGE;

Creating Event Alerters

What Happens on the Program Side

printf ("Get new event!\n");
for (1=0;i<number_of_stocks;i++)
printf ("Event status for company
%s = %d\n",event_names([i], gds_Sevents[i]);

for (i=0;i<number_of_stocks;i++) {

if (gds_S$Sevents[i]) {
START_TRANSACTION;
FOR S IN STOCKS WITH S.COMPANY = event_names/[i]

printf ("COMPANY: %s changed! NEW PRICE:
sf\n",
S.COMPANY, S.PRICE);

END_FOR;
ROLLBACK;
}

Creating Event Alerters 10-5

Transaction Control of Events

Transaction Control of Events

Events alerters are under transaction control, which means the program that sets the
event trigger off can commit or roll back the event. Interested programs receive notifi-
cation of an event only when the transaction completes.

An event can happen only once per transaction. Regardless of how many times a par-
ticular event is posted during a transaction, it’s regarded as a single event for notifica-
tion purposes.

10-6 Creating Event Alerters

For More Information

For More Information

For more information on defining an event trigger, refer to the define trigger state-
ment in the DDL Reference.

For more information on programming with events, refer to the chapter on program-
ming with events in the Programmer’s Guide.

Creating Event Alerters 10-7

10-8

Chapter 11
Modifying Metadata with Dynamic DDL

This chapter describes how to modify metadata with dynamic DDL. This involves gen-
erating a file of dynamic DDL (DYN) commands and executing those DYN commands
from a host-language program.

Overview

Dynamic DDL is a mechanism you can use to modify metadata at runtime from third-
generation language (3GL) programs.With this mechanism, gdef processes data defi-
nition source files and produces a data definition file that can be included in a 3GL pro-
gram. You should consider using dynamic DDL to update databases when the use of
gdef is inconvenient.

By using dynamic DDL, you can extend database definitions to support new features
and then send users a program that updates their existing databases.

Modifying Metadata with Dynamic DDL 11-1

Overview

This gdef mechanism consists of three elements:

11-2

A language called DYN that specifies metadata updates. Gdef is the only means
for generating DYN commands.

The dynamic option, which directs gdef to generate DYN commands.
A gds routine called gds_$ddl that executes the DYN commands.

Note

Ada has special variations that are described in the Ada examples
later in this chapter. If you program in Ada, be sure to read the
variations described in these examples.

Modifying Metadata with Dynamic DDL

Generating and Using DYN Commands

Generating and Using DYN Commands

To generate and use DYN commands:

1. Create a DDL source file to modify the database.

2. Back up your database.

3. Compile the source file using the gdef dynamic and language options.
4

Include the resulting data file in a program that readies the database, calls the
gds_8$ddl routine, commits its changes, and finishes the database.

5. Precompile the program with gpre, and then compile and link the program.
6. Run the program to modify a runtime version of the database.

These steps are described below and illustrated with an extended example that shows
how to use DYN commands in a C language program. Examples with other program-
ming languages are presented later in this chapter.

Creating the DDL Source File

Use an editor to create a source DDL file that contains the metadata changes you want
to make.

In the extended example, the football.gdl source file adds the relation
FOOTBALL_TEAMS to atlas.gdb. The new relation uses existing global fields and
defines a new field called DOMED:

modify database ’atlas.gdb’;

define relation football_teams
team_name,
city,
state,
home_stadium,
seating,
surface,
domed char[1l],
league;

Backing Up Your Database

Before you compile the DDL source file, be sure to back up your database. For example,
to back up your datababase in UNIX, type:

gbak atlas.gdb atlas.gbak

oe

Modifying Metadata with Dynamic DDL 11-3

Generating and Using DYN Commands

When gdef processes the DDL file, it makes the changes directly to the database. You
can’t make those changes to the database again without generating errors. To avoid
errors, you must run the application program on a copy of the database as it originally

existed.

Compiling the DDL Source File

To compile the DDL source file, invoke gdef by using the following syntax:

Operating System

Apollo AEGIS
UNIX
VMS

Syntax

% gdef -dynamic dyn-filespec [-language] gdl-filespec
% gdef -dynamic dyn-filespec [-language] gdl-filespec
$ gdef/dynamic = dyn-filespec [/language] gdl-filespec

For example, to compile the football.gd!l source file in UNIX, type:

% gdef -dynamic dyn.dat.c football.gdl

This writes the DYN commands to a readable data file called dyn.dat.c.

Note

The output file has exactly the same name given in the command
line. No extensions are appended.

The dynamic DDL that gdef generates in this step is shown below:

gds_S$dyn_version_1,
gds_s$dyn_begin,

gds_sdyn_def_rel, 14,0,

'F',’0’,'0","T",'B’,'A’,'L', L', _",'T' , 'E','A",'M","'S",
gds_Sdyn_end,
gds_S$dyn_def_local_f1ld, 9,0,
‘¢, B, A, M, ,'N A, MY 'E Y,
gds_Sdyn_rel_name, 14,0,

p——4

‘gr,ror o, B, A ', ', P, A, "M, ST,
gds_Sdyn_fld_position, 2,0, 0,0,
gds_Sdyn_end,
gds_S$dyn_def_local_fld, 4,0,
'cr, I, T, Y,
gds_Sdyn_rel_name, 14,0,

11-4 Modifying Metadata with Dynamic DDL

Generating and Using DYN Commands

'R’ ,'0’,’0",'T",'B",'A",'L", 'L, ", ', 'E", A", 'M", 'S,
gds_Sdyn_fld_position, 2,0, 1,0,
gds_S$dyn_end,
gds_S$dyn_def_local_f1ld, 5,0,
', T, A, T, TE,
gds_Sdyn_rel_name, 14,0,

‘F’,’0','o’','T','B",'A",'L",'L", ", ,'E","A",'M", 'S,
gds_Sdyn_fld_position, 2,0, 2,0,
gds_Sdyn_end,
gds_S$dyn_def_local_fld, 12,0,
'H’,'O’,'M’,'E",’_",'S",'T",'A",'D",'1",'U","'M",
gds_Sdyn_rel_name, 14,0,

‘ErL,'Q’ 0, ', B, A, 'L, 'L, T, B PA MY, 'S,
gds_S%dyn_fld_position, 2,0, 3,0,
gds_sdyn_end,
gds_Sdyn_def_local_f1ld, 7,0,
‘s, ', A", T, T,)N, TG,
gds_Sdyn_rel_name, 14,0,

‘F’,’0',’0','T",'B’,'A", L', 'L’,"_",'T','E’,'A",'M",’S",
gds_$dyn_f1d_position, 2,0, 4,0,
gds_Sdyn_end,
gds_s$dyn_def_local_f1ld, 7,0,
‘gr,'yg’ 'R, 'F A, 'CY L, TE Y,
gds_Sdyn_rel_name, 14,0,

'F’,'0’,’0’,’T','B','A",'L’, 'L, "_",'T",'E', A", 'M',"'S",
gds_S$dyn_f1ld_position, 2,0, 5,0,
gds_S$dyn_end,
gds_S$dyn_def_global_f£f1ld, 5,0,
'D’,’O0",'M','E",'D",
gds_Sdyn_fld_type, 2,0, 14,0,
gds_S$dyn_f1ld_length, 2,0, 1,0,
gds_Sdyn_f1ld_scale, 2,0
gds_Sdyn_f1ld_sub_type,
gds_sSdyn_end,
gds_Sdyn_def_local_fld, 5,0,
‘'D’,’'0’,'M","E’,'D’,
gds_S$dyn_rel_name, 14,0,

N~

Modifying Metadata with Dynamic DDL 11-5

Generating and Using DYN Commands

gds_S$dyn_fld_position, 2,0, 6,0,
gds_S$dyn_end,
gds_sdyn_def_local_fld, 6,0,
'L','E’,'A",'G",'U","E",
gds_Sdyn_rel_name, 14,0,

‘gr,ror, o, '8, A, 'L, 'L, ', 'E L, PAY , 'MY L, 'S,
gds_Sdyn_fld_position, 2,0, 7,0,
gds_S$dyn_end,
gds_S$dyn_end,
gds_Sdyn_eoc

Including the file in a program

Include the data file created by gdef in a program that calls gds_$ddl. This routine
modifies data definitions by executing DYN commands.

The calling sequence of the gds_$ddl routine is shown below:

Syntax: status = gds_$ddl (status_vector, db_handle,

transaction_handle, dyn_message_length,
dyn_message_address)

Arguments: Parameter Datatype In/Out
status_vector long out
db_handle ulong inout
transaction_handle ulong inout
dyn_message_length ushort in
dyn_message_address uspec in

For more information about using gds calls in programs, see the chapter on using
OSRI calls in the Programmer’s Guide.

The C program modify_atlas.e, shown below, does the following:

Includes the data file, dyn.dat.c
Starts a transaction to modify the database

Calls the gds_$ddl routine to execute the commands in the data file, and commits
those changes

DATABASE DB = ‘atlas.gdb’;

static unsigned char dyn_gdl[] = {
#include "dyn.dat.c"

Modifying Metadata with Dynamic DDL

Generating and Using DYN Commands

Y

main ()

{

READY;
START_TRANSACTION;

gds_$ddl (gds_$status, &DB, &gds_Strans, sizeof (dyn_gdl),
dyn_gdl) ;

if (gds_Sstatus[1l])
gds_Sprint_status (gds_S$status);

COMMIT;
FINISH;
}

Precompiling, Compiling, and Linking the Program

Precompile the program by using gpre:

% gpre -n -m modify_atlas.e
Next, compile and link the program as you do with other DML programs.

The resulting program, modify_atlas, uses the metadata modifications in the data file
included in the program and calls the access method to modify atlas.gdb. Runtime sys-
tem users who don’t have gdef can use such programs to modify data definitions.

For more information about precompiling programs with gpre, refer to the chapter on
preprocessing your program in the Programmer’s Guide.

Modifying the Data Definitions

Modify the data definitions by runhing the program that contains the DYN commands.
You can verify the changes to the database by using qli:

% modify_atlas

% aqli

Welcome to QLI

Query Language Interpreter

QLI> ready atlas.gdb

QLI> show relation football_ teams
FOOTBALL_TEAMS

Modifying Metadata with Dynamic DDL 11-7

Generating and Using DYN Commands

TEAM_NAME

CITY
STATE
HOME_S

TADIUM

SEATING

SURFAC
DOMED
LEAGUE

E

varying text,
varying text,
varying text,
varying text,
long binary
text, length 1
text, length 1
text, length 1

QLI> show field domed

Field DOMED in relation FOOTBALL_TEAMS of database QLI 0

Global field DOMED
Datatype information:

text,

length 1

length 15
length 25
length 4

length 30

Modifying Metadata with Dynamic DDL

Additional Examples

Additional Examples

The following sections contain brief program examples for additional languages. The
examples also include sample data files that result from gdef’s dynamic option, where
applicable. In the Ada examples and the COBOL example, the output from the
dynamic option is contained in the programs.

These brief programs modify a database named example.gdb using the data file and the
gds_$ddl routine described in greater detail in previous sections. The programs mod-
ify example.gdb to add a relation called R that contains a field called L.

Apollo Ada Program Example

Ada programs can’t call gds routines directly. Therefore this Ada example calls the
interbase.ddl and interbase.print_status routines:

WITH basic_io, interbase;
PROCEDURE dyn_test IS
DATABASE DB = "example.gdb";

-—-- The following code, generated by gdef dynamic,
-—-— has been included here by the user.
gds_dyn_length: short_integer := 48;

gds_dyn: CONSTANT interbase.blr (1..48) := (
1,2,9,1,0,82,3,6,1,0,73,70,2,0,7,0,
71,2,0,2,0,72,2,0,0,0,73,2,0,0,0,3,
7,1,0,73,50,1,0,82,92,2,0,0,0,3,3,-1

) ;

--—- End of included gdef code

begin

READY;
START_TRANSACTION;

interbase.ddl (gds_status, DB, gds_trans, gds_dyn_length,

gds_dyn'’address) ;

if (gds_status (1) /= 0) then
interbase.print_status (gds

end if;

status) ;

Modifying Metadata with Dynamic DDL 11-9

Additional Examples

COMMIT;
FINISH;
end dyn_test;

Apollo FORTRAN Example

PROGRAM TEST
%include 'dyn.dat.ftn.1l’
DATABASE DB = ‘example.gdb’
%include ‘dyn.dat.ftn.2’

READY
START_TRANSACTION

call GDS_SDDL (gds_Sstatus, DB, gds_Strans,
+ gds_Sdyn_length, gds_$dyn)
if (gds_Sstatus(2) .ne. 0) call gds_S$print_status
(gds_Sstatus)

COMMIT
FINISH

stop
end

The data file dyn.dat.ftn.1:

INTEGER*2 GDS_S$DYN_LENGTH
INTEGER*4 GDS_S$DYN(12)

The data file dyn.dat.ftn.2:

DATA GDS_SDYN_LENGTH /48/
DATA (GDS_SDYN(I) I=1,12) /
+
16910593,5374726,16795974,33556224,1191313410,4719104,
+ 18690,3,117506121,838926418,1543634944,197631/

The output from gdef -d produces only one filename, which receives the name given on
the command line. This file must be split into two files, as shown above. In the FOR-
TRAN program code, the include statement for file “one” must be above the db state-
ment,; for file “two”, below it.

11-10 Modifying Metadata with Dynamic DDL

Additional Examples

Apollo Pascal Example

program test (input, output);
DATABASE DB = ’‘example.gdb’

var
%include ‘dyn.dat.pas’;

begin

READY;
START_TRANSACTION;

GDS_$DDL (gds_S$status, DB, gds_S$trans, gds_sdyn_length,
gds_s$dyn) ;
1f (gds_S$status [2] <> 0) then

gds_Sprint_status (gds_S$status);

COMMIT;
FINISH;
end.

The data file, dyn.dat.pas:

gds_$dyn_length: integerl6 := 48;
gds_S$dyn: array [1..48] of char := [
gds_$dyn_version_1,
gds_S$dyn_begin,
gds_S$dyn_def_rel, chr(l),chr(0), 'R’,
gds_S$dyn_end,
gds_$dyn_def_global_fld, chr(l),chr(0), 'I’,
gds_$dyn_fld_type, chr(2),chr(0), chr(7),chr(0),
gds_sdyn_fld_length, chr(2),chr(0),
chr(2),chr(0),
gds_S$dyn_fld_scale, chr(2),chr(0),
chr(0),chr(0),
gds_S$dyn_f1ld_sub_type, chr(2),chr(0),
chr(0),chr(0),
gds_S$dyn_end,
gds_s$dyn_def_local_£f1ld, chr(l),chr(0), 'I',
gds_S$dyn_rel_name, chr(l),chr(0), 'R’,
gds_$dyn_fld_position, chr(2),chr(0),
chr (0),chr(0),

Modifying Metadata with Dynamic DDL 11-11

Additional Examples

gds_sdyn_end,
gds_S$dyn_end,
gds_sdyn_eoc
1; (* end of DYN string *)

VAX Ada Example

Ada programs can’t call gds routines directly. Therefore this Ada example calls the
interbase.ddl and interbase.print_status routines:

WITH basic_1io, interbase;
PROCEDURE dyn_test IS
DATABASE DB = "example.gdb";

--- The following code, generated by gdef dynamic,
--- has been included here by the user.
gds_dyn_length: short_integer := 48;

gds_dyn: CONSTANT interbase.blr (1..48) := (
1,2,9,1,0,82,3,6,1,0,73,70,2,0,7,0,
71,2,0,2,0,72,2,0,0,0,73,2,0,0,0,3,
7,1,0,73,50,1,0,82,92,2,0,0,0,3,3,-1

)

--- End of included gdef code

begin

READY;
START_TRANSACTION;

interbase.ddl (gds_status, DB, gds_trans, gds_dyn_length,
gds_dyn’address) ;
if (gds_status (1) /= 0) then
interbase.print_status (gds_status);
end 1if;

COMMIT;

FINISH;
end dyn_test;

11-12 Modifying Metadata with Dynamic DDL

Additional Examples

VAX BASIC Example

10 $TITLE "TEST"
DATABASE DB = ‘example.gdb’
%include ‘dyn_dat.bas’

READY
START_TRANSACTION

CALL GDS_S$SDDL BY REF (gds_S$status, DB, gds_S$trans, &
gds_$dyn_length BY VALUE, gds_S$dyn)
if gds_Sstatus(2) <> 0 then
CALL gds_S$print_status (gds_Sstatus)
end if

COMMIT
FINISH
end

The data file, dyn_dat.bas:

DECLARE WORD CONSTANT gds_S$dyn_length = 48

DECLARE STRING CONSTANT gds_S$dyn =&
‘1'C + '2'C + '9'C + '1'C + '0'C + 'R’ + '3'C + '6'C + '1'C + &
'0°C + 'I' + 'F' + '2'C + '0'C + '7'C + '0'C + ‘G’ + '2'C + '0'C

+ &

'2'C + '0'C + 'H" + '2'C + '0'C + '0'C + '0'C + 'I" + "'"2'C + &
'0'C + '0'C + '0'C + '3'C + '7'C + '1'C + '0'C + "I + '2" + &
'1'C + '0’'C + 'R’ + "' 4+ '2'C + '0'C + '0'C + '0'C + '3'C + &
'3'C + '255'C

VAX C Example
DATABASE DB = ‘example.gdb’;
static unsigned char dyn_gdl[] = {

#include "dyn_dat.c"
Y

main()

{
READY;

Modifying Metadata with Dynamic DDL 11-13

Additional Examples

START_TRANSACTION;

gds_sddl (gds_S$status, &DB, &gds_Strans, sizeof (dyn_gdl),
dyn_gdl) ;

if (gds_S$status[1])
gds_Sprint_status (gds_Sstatus);

COMMIT;
FINISH;
}

The data file, dyn_dat.c:

gds_S$dyn_version_1,
gds_S$dyn_begin,
gds_Sdyn_def_rel, 1,0, ’'R’,
gds_S$dyn_end,
gds_S$dyn_def_global_fld4, 1,0, ‘I,
gds_S$dyn_f1ld_type, 2,0, 7,0
gds_sdyn_f1ld_length, 2,0, 2,
gds_Sdyn_f1d_scale, 2,0, 0,0,
gds: S$dyn_f1ld_sub_type, 2,0, 0,0,
gds_S$dyn_end,
gds_sdyn_def_local_f14, 1,0, 'I',
gds_$dyn_rel_name, 1,0, 'R’,
gds_S$dyn_f1d_position, 2,0, 0,0,
gds_S$dyn_end,
gds_Sdyn_end,
gds_S$dyn_eoc

’

0,

VAX COBOL Example

IDENTIFICATION DIVISION.
PROGRAM-ID. DYN_TEST.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
DATABASE DBl = FILENAME "example.gdb"
01 D-STAT PIC Z7ZZ9.
* The following code, generated by gdef dynamic,
* has been included here by the user.
01 GDS_SDYN_LENGTH PIC S9(4) USAGE COMP VALUE IS 48.
01 GDS_SDYN.

11-14 Modifying Metadata with Dynamic DDL

Additional Examples

03 GDS_$DYN_1 PIC S9(9) USAGE COMP VALUE IS 17367553.
03 GDS_S$DYN_2 PIC S9(9) USAGE COMP VALUE IS 100880896.
03 GDS_$DYN_3 PIC S9(9) USAGE COMP VALUE IS 1179189249.
03 GDS_$DYN_4 PIC S9(9) USAGE COMP VALUE IS 458754.
03 GDS_SDYN_5 PIC S9(9) USAGE COMP VALUE IS 33555015.
03 GDS_S$DYN_6 PIC S9(9) USAGE COMP VALUE IS 149504.
03 GDS_$DYN_7 PIC S9(9) USAGE COMP VALUE IS 38338560.
03 GDS_$DYN_8 PIC S9(9) USAGE COMP VALUE IS 50331648.
03 GDS_$DYN_9 PIC S9(9) USAGE COMP VALUE IS 1224737031.
03 GDS_$DYN_10 PIC S9(9) USAGE COMP VALUE IS 1375732018.
03 GDS_$DYN_11 PIC S9(9) USAGE COMP VALUE IS 604.
03 GDS_SDYN_12 PIC S9(9) USAGE COMP VALUE IS -16579840.

* End of included gdef code

PROCEDURE DIVISION.

MAIN-ROUTINE.

READY.
START_TRANSACTION.

CALL "GDS_S$DDL" USING GDS_S$STATUS_VECTOR, BY REFERENCE DBI1,
- gds_Strans, BY VALUE GDS_$DYN_LENGTH,
- BY REFERENCE GDS_S$DYN
IF GDS_SSTATUS (2) NOT = 0 THEN
CALL "GDS_$PRINT_STATUS" USING GDS_S$STATUS_VECTOR
END-IF

COMMIT.
FINISH.

STOP RUN.

VAX FORTRAN Example

PROGRAM TEST

include ‘dyn_datl.ftn’
DATABASE DB = ‘example.gdb’
include ‘dyn_dat2.ftn’

READY
START_TRANSACTION

Modifying Metadata with Dynamic DDL 11-15

Additional Examples

call GDS_SDDL (gds_S$Sstatus, DB, gds_Strans,
+ $VAL (gds_s$dyn_length), %REF (gds_S$dyn))
if (gds_S$status(2) .ne. 0) call gds_S$Sprint_status
(gds_S$status)

COMMIT
FINISH

stop
end
The data file, dyn_datl1.fin:
INTEGER*2 GDS_S$DYN_LENGTH
INTEGER*4 GDS_S$SDYN(12)
The data file dyn_dat2.ftn:

DATA GDS_SDYN_LENGTH /48/
DATA (GDS_SDYN(I) 1I=1,12) /
+
16910593,5374726,16795974,33556224,1191313410,4719104,
+ 18690,3,117506121,838926418,1543634944,197631/

The output from gdef -d produces only one filename, which receives the name given on
the command line. This file must be split into two files, as shown above. In the FOR-
TRAN program code, the INCLUDE statement for file "one" must be above the DB
statement,; for file "two", below it.

VAX Pascal Example

program test (input, output);
DATABASE DB = 'example.gdb’

var
%include ’'dyn_dat.pas’

begin

READY;
START_TRANSACTION;

GDS_S$DDL (gds_S$status, DB, gds_Strans, gds_S$dyn_length, %REF

gds_S$dyn) ;
if (gds_S$status [2] <> 0) then

11-16 Modifying Metadata with Dynamic DDL

Additional Examples

gds_Sprint_status (gds_$status);

COMMIT;
FINISH;
end.

The data file dyn_dat.pas:

gds_S$dyn_length: gds_S$short := 48;
gds_S$dyn: packed array [1..48] of char := (
gds_S$dyn_version_1,
gds_s$dyn_begin,
gds_S$dyn_def_rel, chr(l),chr(0), 'R’,
gds_S$dyn_end,
gds_S$dyn_def_global_f1d, chr(l),chr(0), 'I’,
gds_$dyn_f1ld_type, chr(2),chr(0), chr(7),chr(0),
gds_S$dyn_£f1d_length, chr(2),chr(0), chr(2),chr(0),
gds_s$dyn_fld_scale, chr(2),chr(0), chr(0),chr(0),
gds_S$dyn_f1d_sub_type, chr(2),chr(0),
chr(0),chr(0),
gds_s$dyn_end,
gds_S$dyn_def_local_f1d, chr(l),chr(0), 'I',
gds_S$dyn_rel_name, chr(l),chr(0), 'R’,
gds_s$dyn_f1ld_position, chr(2),chr(0),
chr(0),chr(0),
gds_S$dyn_end,
gds_Ssdyn_end,
gds_S$dyn_eoc) :

(* end of DYN string *)

VAX PL/| Example

DYN_TEST: PROCEDURE OPTIONS (MAIN) ;
DATABASE DB = 'example.gdb’
$include ’'dyn_dat.pli’;

READY;
START_TRANSACTION;

CALL GDS_S$DDL (ADDR (gds_Sstatus), DB, gds_Strans,
gds_Sdyn_length, gds_Sdyn);

Modifying Metadata with Dynamic DDL 11-17

Additional Examples

if (gds_S$status(2) ~= 0) then
CALL gds_Sprint_status (gds_S$status);

COMMIT;
FINISH;
end;

The data file, dyn_dat.pli:

DECLARE gds_s$dyn_length FIXED BINARY (15) STATIC INITIAL (48);
DECLARE gds_S$dyn (48) FIXED BINARY (7) STATIC INITIAL (

1,0,82,3,6,1,0,73,70,2,0,7,0,71,2,0,2,0,72,2,0,0,0,73,2,
,0,0,3,7,1,0,73,50,1,0,82,92,2,0,0,0,3,3,-1);

11-18 Modifying Metadata with Dynamic DDL

For More Information

For More Information

‘For information on preprocessing, compiling, and linking programs, refer to the chap-
ters on preprocessing your program and compiling and linking your program in the

Programmer’s Guide.

For more information on the gdef command, refer to the DDL Reference.

Modifying Metadata with Dynamic DDL 11-19

11-20

Chapter 12
Using Other Interfaces to Define

Data

This chapter discusses how to use program interfaces other than gdef to define data.

Overview

The interfaces to metadata that InterBase supports are described below. This is fol-

lowed by a discussion of why you might want to use these interfaces rather than using
gdef.

Data Definition Alternatives

InterBase supports several interfaces to metadata:
* Gdef, which is described in this document.

* Qli, the interactive data manipulation utility.

Using Other Interfaces to Define Data 12-1

Overview

e Hostlanguage programs that contain embedded SQL metadata statements. These
statements provide a subset of gdef’s capabilities. In addition, SQL has its own
grant and revoke statements for securing relations.

e Host language programs that contain dynamic DDL statements. Instructions for
generating dynamic DDL statements are presented in Chapter 11, Modifying
Metadata with Dynamic DDL.

¢ Host language programs that contain calls to gds routines.

You can also write your own interface to metadata by referencing system relations
directly. These relations are described in Appendix A, System Relations.

Caution

In general, it’s best to update metadata by using either gdef, qli
metadata statements, embedded SQL metadata statements, or em-
bedded dynamic DDL statements.

If you choose to update metadata by accessing system relations di-
rectly, be sure you have detailed knowledge of these relations.

Why Not Use Gdef?

Gdef is a general-purpose metadata definition and modification utility. It accepts
either interactive input or input from a file, and can define and modify entities in a
database. However, gdef may not be appropriate for your application and user popu-
lation. You may have to read metadata from your application programs, or you might
want to allow programs themselves to make certain metadata changes, such as
increasing the size of fields.

If you are developing an application for others to use, you may prefer to provide them
with a program that updates their database format rather than allowing them to make
their own changes with gdef.

Because InterBase offers several interfaces to metadata, you can choose the one that
best reflects your users’ needs.

12-2 Using Other Interfaces to Define Data

Metadata Transaction Control

Metadata Transaction Control

A detailed description of metadata transaction control under qli and metadata trans-
action control in host-language programs is presented below.

Metadata Transaction Control Under Qli

For the sake of efficiency, qli maintains its own in-memory image of the database’s
metadata. When you ask qli to store or retrieve data, it uses its in-memory image to
verify that your request makes sense. When qli readies a database, it creates a new
image in-memory of the metadata for the database.

Qli’s handling of metadata changes differ, depending on whether you make the
changes through qli metadata commands or make them directly to the system rela-
tions. These differences are discussed below.

Using Qli Metadata Commands

Metadata changes you make by using qli metadata update statements like modify
relation and modify field are visible immediately. You can see the changes in the
system relations as you make them. The changes become available to other processes
when you commit the main transaction.

Metadata changes in qli take place under a special-purpose transaction that gli starts
in response to a metadata update command. Qli automatically commits this transac-
tion for you after it performs the requested action.

Changing the System Relations Directly

Metadata changes you make by updating system relations directly are not available
immediately, because they’re not reflected in qli’s metadata image.You must not only
commit the changes, but also must finish and re-ready the database before you can
access the changes. Before qli can parse requests involving the new relation, it must
re-create its image of the database.

For example, consider the RDB$FIELD_POSITION field of the RDB$RELATION _-
FIELDS relation. This field provides gli with an ordinal position for displaying field
values. The default position for added fields is the highest position plus one, so you may
find that newly defined fields are not in the most logical position for display with qli.

By updating the value of RDB$FIELD_POSITION, you can have qli display the fields
in the order you want.

Using Other Interfaces to Define Data 12-3

Metadata Transaction Control

The following gli script updates the position field:

QLI> ready atlas.gdb
QLI> for rdb$relation_fields with

CON> rdb$relation_name = river_states
CON> print rdb$field_name, rdbsfield position then
CON> modify rdbS$field_position

RDBSFIELD RDBSFIELD

NAME POSITION

RIVER 0
Enter RDBSFIELD_POSITION: 1
STATE 1

Enter RDBSFIELD_POSITION: 0

QLI> print first 5 river_states

RIVER STATE
Yukon AK
Rio Grande TX
Rio Grande NM
Rio Grande CoO
Mississippi-Missouri LA

QLI>

As you can see, qli has not reversed the field positions, although the following print
statement shows that the system relations have been updated:

QOLI> print rdb$field_name, rdbS$field_position of

CON> rdbSrelation_fields with
CON> rdbSrelation_name = river_states
RDBSFIELD RDBSFIELD
NAME POSITION
RIVER 1
STATE 0
QLI>

To have qli use the new metadata, you must finish the database and re-ready it. The
following commands do so and then display the data:

12-4 Using Other interfaces to Define Data

Metadata Transaction Control

QLI> commit

QLI> finish

QLI> ready atlas.gdb

QLI> print first 5 river_states

AK Yukon

TX Rio Grande

NM Rio Grande

CO Rio Grande

LA Mississippi-Missouri

QLI>

Qli waited until the database was detached before providing new metadata. Qli reads
metadata only once per database attachment. This update lag protects the interdepen-
dence of many of the system relations, so that you don’t have to be concerned with the
order of metadata updates.

For more information on updating metadata in qli, refer to the chapter on defining
metadata in the QIi Guide.

Metadata Transaction Control in Host-Language Programs

When you update metadata through a host-language program, the visibility and avail-

ability of these changes differs, depending on how you update the metadata:

* When you make metadata changes through SQL statements, you can see the
changes in the system relations immediately. These changes become available
when you commit the transaction.

* Most metadata changes that you make by updating system relations directly are
neither visible (through the system relations) nor available until you finish and
re-ready the database.

Only changes that you make to indexes become available when you commit the as-
sociated transaction.

If your metadata changes involve the creation or modification of fields, relations, and
views, you need to precompile the program with another database that contains a tem-
plate of these new objects. If you don’t do this, gpre won’t recognize the new objects,
and your program won’t precompile.

For more information on updating metadata through SQL statements, refer to the
chapter on defining metadata with SQL in the Programmer’s Guide.

Using Other Interfaces to Define Data 12-5

Sample Data Definition Update Program

Sample Data Definition Update Program

The following C program adds an index for a relation by adding records to RDB$INDI-

CES and RDB$INDEX_SEGMENTS. The first relation associates the index with a
relation, and the latter contains a record for each field that makes up the index.

This example shows that some metadata functions, like adding an index, involve mul-
tiple system relations. If you're going to make metadata changes directly, you must
know about system relation interconnections:

/* addindex program */

#include <stdio.h>
#include <ctype.h>

database atlas = "atlas.gdb";

int counter;
char truth [3];
char count [10];

main ()

{
ready;
start_transaction;

store ind in rdb$indices using

printf ("Enter relation name in upper case: ");

gets (ind.rdbSrelation_name) ;

printf ("Enter index name in upper case: ");

gets (ind.rdbsindex_name) ;

printf ("Is index unique (y/n)? ");

gets (truth);

if ((truthf{0] == "y") Il (truth[0] == "Y"))
ind.rdbSunique_flag = 1;

else

ind.rdbSunique_flag = 0;

printf ("How many fields form the index key? ");

gets (count);

ind.rdbS$segment_count = atoi (count);

printf ("Enter the key fields from most to least
significant.\n");

for (counter = 0; counter < ind.rdb$segment_count;
counter++) {

12-6 Using Other Interfaces to Define Data

Sample Data Definition Update Program

store seg in rdb$index_segments using
strcpy (seg.rdb$index_name, ind.rdb$index_name) ;
seg.rdbS$field _position = counter;
printf ("Enter field name in upper case: ");
gets (seg.rdb$field_name);
end_store; /* store one segment */
}
end_store; /* store the index record */
commit;
finish;

}

This example performs an operation in more lines than gdef would require. If you
choose to write your own metadata interface, you may want to take advantage of host
language features, workstation graphics, and alternate input devices (for example, a
mouse) to liven up your interface.

In any case, the main thing to remember is that you can use the same language to
manipulate both user data and system metadata, so if you find that gdef is not an
appropriate interface for your application, you can take your knowledge of relational
data manipulation and apply it to the metadata.

Using Other Interfaces to Define Data 12-7

For More Information

For More Information

For more information on the metadata interfaces, refer to:
e The QIi Guide, for information on using qli.

e Chapter 11, Modifying Metadata with Dynamic DDL, for information on using
host-language programs with dynamic DDL commands.

¢ The chapter on defining metadata with SQL in the Programmer’s Guide, for infor-
mation on using host-language programs with embedded SQL statements.

For more information on system relations, refer to Appendix A, System Relations.

12-8 Using Other Interfaces to Define Data

Overview

Appendix A
System Relations

This appendix lists the InterBase system relations and presents a detailed description
of each relation.

Overview

Gdef automatically writes to the InterBase system relations whenever it defines or
modifies a data definition. If you use gdef for data definition and modification, you
don’t have to understand these relations.

You can access system relations by using SQL, GDML, qli, and the call interface. If
your application does require you to read or to write to the system relations, you should
pay close attention to the relationships among these relations. For example, a relation
in a field appears in two system relations: one that describes global field characteris-
tics, and a second that describes the characteristics of that field as it appears in the
relation.

A-1

RDB$DATABASE

RDB$DATABASE

The RDB$DATABASE system relation defines a database.

Table A-1 describes the RDB$DATABASE relation. All field names in the table are pre-
fixed by the characters RDB$.

Table A-1. RDB$DATABASE

Field Name Datatype | Length | Description

DESCRIPTION Blob Contains a user-written description
of the database being defined.

When you include a comment in a
define database or modify data-
base statement, gdef writes to this

field.

RELATION_ID Short For internal use by InterBase. Do
not modify.

SECURITY_CLASS | Char 31 Names a security class defined in the

RDB$SECURITY_CLASSES rela-
tion. The access control limits
described in the named security
class are applied to all database
usage.

A-2

RDB$DEPENDENCIES

RDB$DEPENDENCIES

The RDB$DEPENDENCIES system relation keeps track of the relations and fields
that are depended upon by other system objects. These objects can be views, triggers,
or computed fields. InterBase uses the RDB§DEPENDENCIES relation to ensure that
you can’t delete a field or relation that’s used in any of these objects.

Table A-2 describes the RDB$DEPENDENCIES relation. All field names in the table
are prefixed by the characters RDB$.

Table A-2. RDB$DEPENDENCIES

Field Name Datatype | Length | Description

OBJECT_NAME Char 31 Names the object being kept
track of in this relation. This

object can be a view, trigger, or
computed field.

RELATION_NAME Char 31 Names the relation that’s refer-
enced by the object named above.

FIELD_NAME Char 31 Names the field that’s referenced
by the object named above.

DEPENDENCY_TYPE | Short Describes the object type. Valid
values are:

0 - view

1 - trigger

2 - computed field

All other values are reserved for
future use.

A-3

RDBS$FIELDS

RDBSFIELDS

The RDB$FIELDS system relation defines the global characteristics of a field. There
is one record in RDBSFIELDS for each global field. Fields are added to relations by
means of an entry in the RDB$RELATION_FIELDS relation, where local characteris-

tics are described.

Table A-3 describes the RDB$FIELDS relation. All field names in the table are pre-
fixed by the characters RDB$.

Table A-3. RDB$FIELDS

Field Name

Datatype

Length

Description

FIELD_NAME

Char

31

Names the field defined by this rela-
tion. The field name must be unique.

If you change the value of this field,
you must also change its name in the
RDB$FIELD_SOURCE field of any
RDB$RELATION_FIELDS rela-
tions that include this field.

QUERY_NAME

Char

31

Contains an alternate field name for
use in qli; superseded by the query
name in RDB$_RELATION -
FIELDS.

VALIDATION_BLR

Blob

For fields with validation criteria,
contains the BLR of the validation
expression evaluated at time of exe-
cution.

VALIDATION

Blob

For fields with validation criteria,
contains the original text source
expression for the validity check.

COMPUTED_BLR

Blob

For computed fields, contains the
BLR of the expression the database
evaluates at time of execution.

COMPUTED
_SOURCE

Blob

For computed fields, contains the
original text source expression for
the field.

A-4

RDBS$FIELDS

Table A-3. RDB$FIELDS continued

Field Name

Datatype

Length

Description

DEFAULT_VALUE

Blob

This field is reserved for future use.

FIELD_LENGTH

Short

Contains the length of the field
defined in this record. Non-char field
lengths are:

short - 2

long - 4

quad - 8

float - 4

d_float - 8

double - 8

date - 8

blob - 8

FIELD_SCALE

Short

Contains the scale factor for integer
datatypes. The scale factor is the
power of 10 by which the integer is
multiplied.

A-5

RDBS$FIELDS

Table A-3. RDBS$FIELDS continued

Field Name

Datatype

Length

Description

FIELD_TYPE

Short

Specifies the datatype of the field
being defined. Changing the value of
this system field automatically
changes the datatype for all fields
based on the field being defined.

Valid values are:
short - 7

long - 8

quad - 9

float - 10

d_float - 11

char - 14

double - 27

date - 35
varying char - 37
‘C’ string (null terminated text) - 40
blob - 261

Restrictions:

The value of this field can’t be
changed to or from a blob.

Non-numeric data causes a conver-
sion error in a field changed from
char to numeric.

Changing data from char to numeric
and back again adversely affects
index performance. It’s best to delete
and re-create indexes when you
make this type of change.

RDBS$FIELDS

Table A-3. RDBS$FIELDS continued

Field Name

Datatype

Length

Description

FIELD_SUB_TYPE

Short

Used by gli and gpre to distinguish
types of blobs and text.

Predefined subtypes for blob fields
are:

0 - unspecified

1 - char

2 - BLR

3 - access control list

4 - reserved for future use

5 - an encoded description of the
current metadata for a relation

6 - a description of a multi-database
transaction that finished irregularly

Predefined subtypes for char fields
are:

0 - unspecified
1 - fixed binary data

MISSING_VALUE

Blob

Contains the BLR for the missing
value for this field.

DESCRIPTION

Blob

Contains a user-written description
of the field being defined. When you
include a comment in a define field
or modify field statement, gdef
writes to this field.

QUERY_HEADER

Blob

Contains an alternate column
header for use in qli; superseded by
the query header in RDB$RELA-
TION_FIELDS.

SEGMENT_
LENGTH

Short

Used for blob fields only; a non-bind-
ing suggestion for the length of blob
buffers.

A-7

RDBS$FIELDS

Table A-3. RDB$FIELDS continued

Field Name Datatype | Length | Description
EDIT_STRING Char 125 Contains formatting information for
use in qli; superseded by the edit
string in RDB$RELATION -
FIELDS.
EXTERNAL_ Short Indicates the length of the field as it
LENGTH exists in an external relation. If the
field is not in an external relation,
this value is 0.
EXTERNAL Short Indicates the scale factor for an
SCALE external field that has an integer
datatype. The scale factor is the
power of 10 by which the integer is
multiplied.
EXTERNAL_TYPE | Short Indicates the datatype of the field as
it exists in an external relation.
Valid values are:
short - 7
long - 8
quad - 9
float - 10
d_float - 11
char - 14
double - 27
date - 35
varying char - 37
‘C’ string (null terminated text) - 40
blob - 261
DIMENSIONS Short For an array datatype, specifies the

number of dimensions in the array.
For a non-array field, the value is 0.

A-8

RDBS$FIELD_DIMENSIONS

RDBS$FIELD_DIMENSIONS

The RDB$FIELD_DIMENSIONS system relation describes each dimension of an
array field.

Table A-4 describes the RDB$FIELD_DIMENSIONS relation. All field names in the
table are prefixed by the characters RDBS$.

Table A-4. RDB$FIELD_DIMENSIONS

Field Name Datatype | Length | Description

FIELD NAME Short Names the array field described by
this relation. The field name must
exist in the RDB$FIELD_NAME

field of RDB$FIELDS.
DIMENSION Short Identifies one dimension of the array
field. The first dimension is identi-
fied by the integer 0.
LOWER_BOUND Long Indicates the lower bound of the

dimension identified above.

UPPER_BOUND Long Indicates the upper bound of the
dimension identified above.

A-9

RDBSFILES

RDBSFILES

The RDBS$FILES system relation lists the secondary files and shadow files for a data-
base.

Table A-5 describes the RDB$FILES relation. All field names in the table are prefixed
by the characters RDB$.

Table A-5. RDB$FILES

Field Name Datatype | Length | Description

FILE_NAME Char 125 Names either a secondary file or a
shadow file for the database.

FILE_SEQUENCE | Short Specifies either the order that sec-

ondary files are to be used in the
database or the order of files within
a shadow set.

FILE_START Long Specifies the starting page number
for a secondary file or shadow file.

FILE_LENGTH Long Specifies the file length in blocks.

FILE_FLAGS Short Reserved for system use.

SHADOW Short Specifies the set number of a shadow
file. This indicates which shadow set
the file belongs to.

If the value of this field is O or miss-
ing, InterBase assumes the file being
defined is a secondary file, not a
shadow file.

A-10

RDBSFILTERS

The RDB$FILTERS relation defines a blob filter.

RDBS$FILTERS

Table A-6 describes the RDB$FILTERS relation. All field names in the table are pre-
fixed by the characters RDBS$.

Table A-6. RDBS$FILTERS

Field Name

Datatype

Length

Description

FUNCTION_NAME

Char

31

Names the filter defined by this
record. The filter name must be
unique.

DESCRIPTION

Blob

Contains a user-written descrip-
tion of the filter being defined.
When you include a comment in a
define filter statement, gdef
writes to this field.

MODULE_NAME

Char

31

Names the library where the fil-
ter executable is stored.

ENTRYPOINT

Char

31

Specifies the entry point within
the filter library for the blob filter
being defined.

INPUT_SUB_TYPE

Short

Specifies the blob subtype of the
input data.

OUTPUT_SUB_TYPE

Short

Specifies the blob subtype of the
output data.

RDB$FORMATS

RDB$FORMATS

The RDB$FORMATS relation keeps track of the formats of the fields in a relation.
InterBase assigns the relation a new format number each time a field definition is
changed. This allows existing application programs to access a changed relation, with-
out the need to be recompiled.

Table A-7 describes the RDBSFORMATS relation. All field names in the table are pre-
fixed by the characters RDB$.

Table A-7. RDB$FORMATS

Field Name

Datatype

Length

Description

RELATION_ID

Short

Names a relation that exists in
RDB$RELATIONS.

FORMAT

Short

Specifies the format number of the
relation. A relation can have any
number of different formats, depend-
ing on how many times the relation
was updated.

DESCRIPTOR

Blob

Lists each field in the relation, along
with its datatype and length and
scale (if applicable).

RDB$FUNCTIONS

RDBS$FUNCTIONS

The RDB$FUNCTIONS system relation defines a user-defined function.

Table A-8 describes the RDB$FUNCTIONS relation. All field names in the table are
prefixed by the characters RDB$.

Table A-8. RDB$FUNCTIONS

Field Name Datatype Description

Length

FUNCTION_NAME | Char 31 Names the function defined by this
record. The function name must be
unique.

FUNCTION_TYPE | Short Reserved for future use.

QUERY_NAME Char 31 Specifies an alternate name for the
function that can be used in gli.

DESCRIPTION Blob Contains a user-written description
of the function being defined. When
you include a comment in a define

function statement, gdef writes to
this field.

MODULE_NAME Char 31 Names the function library where
the function executable is stored.

ENTRYPOINT Char 31 Specifies the entry point within the
function library for the function
being defined.

RETURN Short Specifies the position of the argu-
ment that gets returned to the call-
ing program. This position is
specified in relation to other argu-
ments.

A-13

RDB$FUNCTION_ARGUMENTS

RDB$FUNCTION_ARGUMENTS

The RDB$FUNCTION _ARGUMENTS system relation defines the attributes of a func-
tion argument.

Table A-9 describes the RDB$FUNCTION_ARGUMENTS relation. All field names in
the table are prefixed by the characters RDBS$.

Table A-9. RDB$FUNCTION_ARGUMENTS

Field Name Datatype Description

Length

FUNCTION_NAME | Char 31 Names the function with which the
argument is associated. The function
name must be unique and must cor-

respond to a function name in RDB$-
FUNCTIONS.

ARGUMENT Short Specifies the position of the argu-
ment being defined in relation to the
other arguments.

MECHANISM Short Specifies whether the argument is
passed by value (value of 0) or by ref-
erence (value of 1).

FIELD_TYPE Short Specifies the datatype of the argu-
ment being defined.

Valid values are:

short - 7

long - 8

quad - 9

float - 10

d_float - 11

char - 14

double - 27

date - 35
varying char - 37
‘C’ string (null terminated text) - 40
blob - 261

A-14

RDB$FUNCTION_ARGUMENTS

Table A-9. RDB$FUNCTION_ARGUMENTS continued

Field Name

Datatype

Length

Description

FIELD_SCALE

Short

Specifies the scale factor for an argu-
ment that has an integer datatype.
The scale factor is the power of 10 by
which the integer is multiplied.

FIELD_LENGTH

Short

Contains the length of the argument
defined in this record.

Field lengths are:

short - 2
long - 4
quad - 8
float - 4
d_float - 8
double - 8
date - 8
blob - 8

FIELD_SUBTYPE

Short

Reserved for future use.

A-15

RDB$GENERATORS

RDBSGENERATORS

The RDB$GENERATORS system relation provides the ability to generate a unique
identifier for a relation.

Table A-10 describes the RDB$GENERATORS relation. All field names in the table
are prefixed by the characters RDB$.

Table A-10. RDB$GENERATORS

Field Name Datatype Length | Description

GENERATOR_NAME Char 31 Names the relation for which a
unique identifier is to be gener-
ated.

GENERATOR_ID Short Specifies the increment value for

the unique identifier.

SYSTEM_FLAG Short Indicates whether the relation
contains user-data (value of 0) or
system information (value
greater than 0).

A-16

RDBSINDEX_SEGMENTS

RDBS$INDEX_SEGMENTS

The RDB$INDEX_SEGMENTS system relation specifies the fields that comprise an
index for a relation. Modifying these records corrupts rather than changes an index
unless you delete and re-create the RDB$INDICES record in the same transaction. You
can’t modify an index, except to make it inactive.

Table A-11 describes the RDB$INDEX _SEGMENTS relation. All field names in the
table are prefixed by the characters RDB$.

Table A-11. RDB$INDEX_SEGMENTS

Field Name

Datatype

Length

Description

INDEX NAME

Char

31

Specifies the index associated with
this index segment. Changes to the
value of this field must also be made
to the RDBSINDEX_NAME field in
RDB$INDICES.

FIELD_NAME

Char

31

Names the index segment being
defined. The value of this field must
match the value of the
RDB$FIELD_NAME field in
RDB$RELATION_FIELDS.

FIELD_POSITION

Short

Specifies the position of the index
segment being defined. The position
corresponds to the sort order of the
index.

A-17

RDBS$INDICES

RDBS$INDICES

The RDB$INDICES relation defines the index structures that allow InterBase to
locate records in the database more quickly. Because InterBase allows you to create
both simple indexes (a single key field) and multi-segment indexes (multiple key
fields), each index defined in this relation must have corresponding occurrences in the

RDB$INDEX_SEGMENTS relation.

Table A-12 describes the RDBSINDICES relation. All field names in the table are pre-
fixed by the characters RDBS$.

Table A-12. RDB$INDICES

Field Name

Datatype

Length

Description

INDEX_NAME

Char

31

Names the index being defined.
Changes to the value of this field
must also be made in the
RDB$INDEX_SEGMENTS relation.

RELATION_NAME

Char

31

Names the relation with which this
index is associated. The relation
must be defined in
RDB$RELATIONS.

INDEX_ID

Short

Contains an internal identifier for
the index being defined.

Do not write to this field.

UNIQUE_FLAG

Short

Specifies whether the index allows
duplicate values (value of 0) or not
(value of 1). Duplicates must be elim-
inated before a unique index can be
created.

DESCRIPTION

Blob

Contains a user-written description
of the index being defined. When you
include a comment in a define
index or modify index state-ment,
gdef writes to this field.

SEGMENT_COUNT

Short

Specifies the number of segments in
the index. If the index is a simple
index, this field has a value of 1.

A-18

RDB$INDICES

Table A-12. RDB$INDICES continued

Field Name Datatype | Length | Description

INDEX_INACTIVE | Short Specifies whether the index is active
(0) or inactive (2).

INDEX_TYPE Short This field is reserved for future use.

A-19

RDB$PAGES

RDB$PAGES

The RDB$PAGES system relation keeps track of each page allocated to the databbase.
Modifying this relation in any way corrupts your database.

Table A-13 describes the RDB$PAGES relation. All field names in the table are pre-
fixed by the characters RDB$.

Table A-13. RDB$PAGES

Field Name Datatype Length | Description

PAGE_NUMBER Long Indicates the physically allocated
' page number.

RELATION_ID Short Indicates the id number of the rela-
tion for which this page is allocated.

PAGE_SEQUENCE | Long Indicates the sequence number of
this page in relation to other pages
allocated for the relation identified
above.

PAGE_TYPE Short Describes the type of page. This
information is for system use only.

A-20

RDB$RELATIONS

RDBS$RELATIONS

The RDB$RELATIONS system relation defines some of the characteristics of relations
and views. Other characteristics, such as the fields included in the relation and a
description of each field, are stored in the RDB$RELATION_FIELDS and
RDBS$FIELDS relations, respectively.

Table A-14 describes the RDB$RELATIONS relation. All field names in the table are
prefixed by the characters RDB$.

Table A-14. RDB$RELATIONS

Field Name Datatype | Length | Description

RDB$VIEW_BLR Blob For a view, contains the BLR of
the record selection expression
InterBase evaluates at the time
of execution.

RDB$VIEW_SOURCE | Blob For a view, contains the original
source record selection expres-
sion of the view definition.

RDB$DESCRIPTION Blob Contains a user-written descrip-
tion of the relation being defined.
When you include a comment in a
define relation or modify rela-

tion statement, gdef writes to
this field.

RDB$RELATION_ID Short Contains the internal identifica-
tion number used in BLR
requests.

Do not modify this field.

RDB$SYSTEM_FLAG | Short Indicates whether the relation
being defined contains user data
(value of 0) or system information
(value of 1).

Do not set this field to 1 for rela-
tions that you create.

A-21

RDB$RELATIONS

Table A-14. RDB$RELATIONS continued

Field Name

Datatype

Length

Description

DBKEY_LENGTH

Short

Indicates the length of the data-
base key. This field has a value of
8 for relations, and 8 times the
number of relations included in
the view for views.

Do not modify the value of this
field.

FORMAT

Short

For InterBase internal use only.
Do not modify.

FIELD_ID

Short

Specifies the number of fields in
the relation. This field is main-
tained by InterBase.

Do not modify the value of this
field.

RELATION_NAME

Char

31

Contains the unique name of the
relation defined by this record.

Changes to the value of this field
must also be made in the
RDB$RELATIONS_NAME field
of any RDB$RELATION_-
FIELDS, RDB$VIEW_RELA-
TION, and RDB$INDICES
relations that include this rela-
tion, and in the BLR of any view
or trigger that references the
relation.

SECURITY_CLASS

Char

31

Names a security class defined in
the RDB$SECURITY_CLASSES
relation. Access controls defined
in the security class will be
applied to all uses of this relation.

A-22

RDB$RELATIONS

Table A-14. RDB$RELATIONS continued

Field Name

Datatype

Length

Description

EXTERNAL_FILE

Char

125

Names the file in which the
external relation is stored. An
external file can be either an
Apollo AEGIS stream file or a
VAX RMS file. This field is blank
if the relation does not corre-
spond to an external file.

RUNTIME

Blob

Describes the metadata for the
relation. This field is used to
enhance performance. Do not
modify this field.

EXTERNAL

Blob

Contains a user-written descrip-
tion of the external file.

OWNER_NAME

Char

31

Identifies the creator of the rela-
tion or view. The creator is con-
sidered the owner for SQL
security (grant/revoke) pur-
poses.

A-23

RDBS$RELATION_FIELDS

RDBSRELATION_FIELDS

The RDB$RELATION_FIELDS system relation lists the fields that comprise a relation
and describes those local field characteristics that are specific to the relation.

Table A-15 describes the RDB$RELATION FIELDS relation. All field names in the
table are prefixed by the characters RDBS$.

Table A-15. RDB$RELATION_FIELDS

Field Name Datatype | Length | Description

FIELD_NAME Char 31 Names the field whose local charac-
teristics are being defined in this
relation. The combination of this
field with that of RDB$RELATION_-
NAME must be unique.

RELATION_NAME | Char 31 Names the relation to which a par-
ticular field belongs. There must be a
relation of this name in RDB$RELA-
TIONS.

The combination of the value of this
field with the value of the

RDBS$FIELD field in this relation
must be unique.

FIELD_SOURCE Char 31 Names the related global field in the
RDBS$FIELDS relation. Modifying
this field changes its global charac-

teristics.

QUERY_NAME Char 31 Contains an alternate field name for
use in qli; supersedes the value in
RDBS$FIELDS.

BASE_FIELD Char 31 For a view, names the local field in a

relation or view that is the base for
the view field being defined.

A-24

RDB$RELATION_FIELDS

Table A-15. RDB$RELATION_FIELDS continued

Field Name

Datatype

Length

Description

BASE_FIELD

Fields drawn from an input relation
specify their origin in RDB$BASE_-
FIELD, which gives the local name
of the field in the source relation,
and RDB$VIEW_CONTEXT, which
specifies the location where the base
field is found.

EDIT_STRING

Char

125

Contains formatting information for
use in qli; supersedes the value in
RDBS$FIELDS.

FIELD_POSITION

Short

Specifies the position of the field in
relation to other fields. Qli uses this
field when printing records; gpre
uses the field order for select state-
ments.

If two or more fields in the same
relation have the same value for this
field, those fields appear in a random
order.

QUERY_HEADER

Blob

Contains an alternate column
header for use in qli: supersedes the
value in RDB$FIELDS.

UPDATE_FLAG

Short

Not used by InterBase; included for
compatability with other DSRI-
based systems.

FIELD_ID

Short

An identifier that can be used in
BLR to name the field. Because this
identifier changes when you back up
and restore the database with gbak,
it’s best to use it in transient
requests only.

Do not modify this field.

A-25

RDB$SRELATION_FIELDS

Table A-15. RDB$RELATION_FIELDS continued

Field Name Datatype | Length | Description

VIEW_CONTEXT Short Identifies the context variable used
to qualify view fields. It must have
the same value as the context vari-
able used in the view BLR for this
context stream.

DESCRIPTION Blob Contains a user-written description
of the field being defined. When you
include a field comment in the con-
text of a define relation or modify
relation statement, gdef writes to

this field.
DEFAULT VALUE | Blob This field is reserved for future use.
SYSTEM_FLAG Short Indicates whether the field contains

user-data (a value of 0) or system
information (a value of 1).

Do not set value to 1 for fields you
create.

SECURITY_CLASS | Char 31 Names a security class defined in the
RDB$SECURITY_CLASSES rela-
tion. The access restrictions that this
security class defines are applied to
all uses of this field.

COMPLEX_NAME | Char 31 Reserved for future use.

A-26

RDB$SECURITY_CLASSES

RDB$SECURITY_CLASSES

The RDB$SECURITY_CLASSES system relation defines access control lists and asso-
ciates them with databases, relations, views, and fields in relations and views.

Table A-16 describes this relation. All field names in the table are prefixed by the char-
acters RDBS.

Table A-16. RDB$SECURITY_CLASSES

Field Name Datatype | Length | Description
SECURITY_CLASS | Char 31 Names the security class being

defined.

If you change the value of this field,
you must also change its name in the
RDB$SECURITY_CLASS field in
RDB$_DATABASE, RDB$RELA-
TIONS, and RDB$RELATION._-
FIELDS.

ACL Blob Contains an access control list that
specifies users and the privileges
granted to those users.

DESCRIPTION Blob Contains a user-written description
of the security class being defined.
When you include a comment in a
define security_ class statement,
gdef writes to this field.

A-27

RDB$TRANSACTIONS

RDBS$TRANSACTIONS

The RDB$TRANSACTIONS relation keeps track of all multi-database transactions.

Table A-17 describes the RDB$TRANSACTIONS relation. All field names in the table
are prefixed by the characters RDB$.

Table A-17. RDB$STRANSACTIONS

Field Name Datatype | Length | Description

TRANSACTION_ID | Long Identifies the multi-database trans-
action being described.

TRANSACTION Short Indicates the state of the transac-
tion. Valid values are:

0 - limbo
1 - committed
2 - rolled back

TIMESTAMP Date This field is reserved for future use.

TRANSACTION Blob Describes a prepared multi-database
transaction. This description is made
available if the reconnect fails.

A-28

RDB$TRIGGERS

RDB$TRIGGERS

The RDB$TRIGGERS system relation defines a trigger.

Table A-18 describes the RDB$TRIGGERS relation. All field names in the table are
prefixed by the characters RDBS$.

Table A-18. RDB$TRIGGERS

Field Name Datatype | Length | Description
TRIGGER_NAME Char 31 Names the trigger being defined.
RELATION_NAME Char 31 Names the relation that’s associ-

ated with the trigger being
defined. The relation name must
exist in RDB$RELATIONS.

TRIGGER Short Specifies a sequence number for
the trigger being defined. The
sequence number determines
when a trigger is executed in
relation to other triggers of the
same type. Triggers that have the
same sequence number execute
ina

random order.

If you don’t assign a sequence

indicator, the trigger is given an
indicator of 0.

TRIGGER_TYPE Short Specificies the type of trigger
being defined. Valid values are:

1 - pre store

2 - post store

3 - pre modify
4 - post modify
5 - pre erase

6 - post erase

A-29

RDBS$TRIGGERS

Table A-18. RDB$TRIGGERS continued

Field Name

Datatype

Length

Description

TRIGGER_SOURCE

Blob

Contains the original source of
the trigger definition. This field is
used when you specify a show
triggers statement through qli.

TRIGGER_BLR

Blob

Contains the BLR representa-
tion of the trigger source.

DESCRIPTION

Blob

Contains a user-written descrip-
tion of the trigger being defined.
When you include a comment in a
define trigger or modify trig-
ger statement, gdef writes to
this field.

TRIGGER

Short

Indicates whether the trigger
being defined is active (value of 0)
or inactive (value of 1).

SYSTEM_FLAG

Short

Indicates whether the trigger
being defined is a user-defined
trigger (value of 0) or a system-
defined trigger (value of 1).

Do not set this field to 1 for trig-
gers you create.

A-30

RDB$TRIGGER_MESSAGES

RDBSTRIGGER_MESSAGES

The RDB$TRIGGER_MESSAGES system relation defines a trigger message and asso-
ciates the message with a particular trigger.

Table A-19 describes the RDB$TRIGGER_MESSAGES relation. All field names in the
table are prefixed by the characters RDBS$.

Table A-19. RDB$TRIGGER_MESSAGES

Field Name Datatype | Length | Description

TRIGGER_NAME Char 31 Names the trigger associated
with this trigger message. The
trigger name must exist in

RDB$TRIGGERS.

MESSAGE_NUMBER Short Specifies the message number of
the trigger message being
defined. The maximum number
of messages is 32,767.

MESSAGE Varying Contains the source for the trig-
ger message.

A-31

RDBS$TYPES

RDBSTYPES

The RDB$TYPES relation defines an enumerated data type. This capability is not
available in the current release.

Table A-20 describes the RDB$TYPES relation. All field names in the table are pre-
fixed by the characters RDB$.

Table A-20. RDB$TYPES

Field Name Datatype Length | Description

FIELD_NAME Char 31 Names the field for which the enu-
merated datatype is being defined.

TYPE Short Identifies the internal number that
represents the field specified above.

TYPE_NAME Char 31 Specifies the text that corresponds to
the internal number.

DESCRIPTION Blob Contains a user-written description
of the enumerated datatype being
defined.

SYSTEM_FLAG Short Indicates whether the relation con-

tains user-data (value of 0) or system
information (value greater than 0).

A-32

RDBSUSER_PRIVILEGES

RDB$USER_PRIVILEGES

The RDB$USER_PRIVILEGES relation keeps track of the privileges assigned to a
user through an SQL grant statement. There is one occurrence of this relation for each
user/privilege intersection.

Table A-21 describes the RDB$USER_PRIVILEGES relation. All field names in the
table are prefixed by the characters RDB$.

Table A-21. RDB$USER_PRIVILEGES

Field Name

Datatype

Length

Description

USER

Char

31

Names the user who was granted the
privilege listed in the RDB$PRIVI-
LEGE field, below.

GRANTOR

Char

31

Names the user who granted the
privilege.

PRIVILEGE

Char

Identifies the privilege granted to
the user listed in the RDB$USER
field, above.

Valid values are:

All
Select
Delete
Insert
Update

GRANT_OPTION

Short

Indicates whether the privilege was
granted with the with grant option
(value of 1) or not (value of 0). This
option enables a user to grant the
same authority to other users.

RELATION

Char

31

Identifies the relation to which the
privilege applies.

FIELD_NAME

Char

31

For update privileges, identifies the
field to which the privilege applies.

A-33

RDBS$SVIEW_RELATIONS

RDBSVIEW_RELATIONS

The RDB$VIEW_RELATIONS system relation describes the general characteristics of
a view, including the record selection expression that tells InterBase how records
should be selected and combined to form the view. Adding a record to RDB$VIEW _
RELATIONS does not cause a new relation to apear in a view unless you also change
the RDBSRELATIONS record that defines the view.

Because view defintions are heavily interdependent, you should delete and re-create
views, rather than modify them. When you do this, be sure to change the related
entries in RDBSRELATIONS, RDB$RELATION_FIELDS, and RDB$VIEW_RELA-
TIONS.

Table A-22 describes the RDB$VIEW_RELATIONS relation. All field names in the
table are prefixed by the characters RDBS$.

Table A-22. RDB$VIEW_RELATIONS

Field Name Datatype | Length | Description

VIEW_NAME Char 31 Names a view. The combination of
RDB$VIEW_NAME and RDB$-
VIEW_CONTEXT must be unique.

RELATION_NAME | Char 31 Names a relation used to construct
view.
VIEW_CONTEXT Short Identifies the context variable used

to qualify view fields. This field must
have the same value as the context
variable used in the view BLR for
this context stream.

CONTEXT _NAME Char 31 Contains a textual version of the
context variable identified in RDB$-
VIEW_CONTEXT.

This variable must match the value
of the RDB$VIEW_SOURCE field
for the corresponding relation occur-
rence in RDB$RELATIONS and be
unique in the view.

A-34

Appendix B
Sample Database Definition

This appendix shows the definition of the atlas.gdb database, which is used in many
documentation examples.

define database "atlas.gdb";

{The atlas database is the sample database used throughout the
documentation set. It is based on a North American atlas and
gazeteer. Type "show relations" at the QLI prompt for a listing
of the relations in the database.}

page_size 1024;

/*Global Field Definitions */

define field ALTITUDE long;

define field AREA long;

define field AREA_CODE char [3];
define field AREA_NAME varying [20];
define field CAPITAL varying [25];
define field CENSUS_1950 long;

B-1

Sample Database Definition

define field CENSUS_1960 long;
define field CENSUS_1970 long;
define field CENSUS_1980 long;
define field CENTER_FIELD long;
define field CITY varying [25];
define field CODE varying [4];
define field COMMENTS blob
segment_length 60;
define field ELECTED_APPT char [1]
valid if (elect_appt = ‘E’

or elected_appt = A’

or elected_appt missing);
ddefine field F1 blob;
define field F2 blob;
define field F3 blob;
define field FIRST_NAME varying [10];
define field FLAG char [1]

valid if (flag = 'Y’

or flag = "N’

or flag missing);
define field GUIDEBOOK blob

segment_length 60;

define field HOME_STADIUM varying [30];
define field INCORPORATION date
define field INIT_TERM date;
define field LAST_NAME varying [20];
define field LATITUDE long;

define field LATITUDE_COMPASS char [1]
missing_value is "x";

define field LATITUDE_DEGREES varying [3]
missing value is -1;

define field LATITUDE_MINUTES char [2]
missing_value is -1;

define field LEAGUE char [1];
define field LEFT_FIELD long;
define field LENGTH long;
define field LOCATION blob
segment_length 60;
define field LONGITUDE long;
define field MIDDLE_INITIAL char [1];
define field NAME varying [207;
define field NUM_TRAILS long
define field OFFICE blob

B-2

Sample Database Definition

segment_length 40;

define field OUTFLOW varying [30];
define field PARTY_AFFILIATION char [1];
define field PHONE char [10]
edit_string " (xXXX)BxXXX-XxXXX";
define field POL_TYPE char [1];
define field POPULATION long;
define field POSTAL_CODE char [10];
define field PROVINCE varying [(4];
define field RIGHT_FIELD long;
define field RIVER varying [30];
define field SEATING long;
define field STATE varying [4];
define field STATEHOOD date;
define field STATE_NAME varying [25];
define field SURFACE char [1];
define field TEAM_NAME varying [15];
define field TRAILS_LIGHTED 1long
query_name LIT;
define field TRAILS_SET long;
define field TYPE char [1]
valid if (type = ’'N’ or
type = ‘A’ or
type = 'B’);
define field YEAR char [4];
define field YEAR_FOUNDED char [4];

define field ZIP

/*Relation Definitions */

varying [10];

define relation BASEBALL_TEAMS

TEAM_NAME position O,
CITY position 1,
STATE position 2,
HOME_STADIUM position 3,
LEAGUE position 4,
LEFT_FIELD position 5,
CENTER_FIELD position 6,
RIGHT_FIELD position 7,
SEATING position 8,
SURFACE position 9;
define relation CITIES
CITY position 0,

B-3

Sample Database Definition

STATE position 1,

POPULATION position 2,

ALTITUDE position 3,

LATITUDE_DEGREES position 6
query_name LATD,

LATITUDE_MINUTES position 7
query_name LATM,

LATITUDE_COMPASS position 8

query_name LATC,
LONGITUDE_DEGREES
based on LATITUDE_DEGREES position 9
query_name LONGD,
LONGITUDE_MINUTES
based on LATITUDE_MINUTES position 10
query_name LONGM,
LONGITUDE_COMPASS
based on LATITUDE_COMPASS position 11
query_name LONGC,
LATITUDE
computed by (latitude_degrees | ' '’
latitude_minutes | latitude_compass)position 4
LONGITUDE
computed by (longitude_degrees | ' ' |
longitude_minutes | longitude_compass)position 5;

define relation CROSS_COUNTRY

AREA_NAME position 0,
CITY position 1,
STATE position 2,
PHONE position 3
edit_string " (xxx)Bxxx-xxxx",
NUM_TRAILS position 4,
TRAILS_SET position 5,
TRAILS_LIGHTED position 6,
INSTRUCTION
based on FLAG position 7
query_header "INST",
RENTALS
based on FLAG position 8
query_header "RENT",
REPAIRS
based on FLAG position 9
query_header "REP",
FOOD

B-4

based on FLAG
LODGE

based on FLAG

query_header "BEDS",
PACKAGES

based on FLAG

query_header "PKG",
GUIDED_TOURS

based on FLAG

query_header "TOUR",
COMMENTS

define relation MAYORS
CITY
STATE
PARTY_AFFILIATION
query_name PARTY
query_header "party",
INIT_ TERM
ELECT_APPT
FIRST_ NAME
MIDDLE_INITIAL
LAST_NAME
MAYOR_NAME
computed by (first_name |
last_name)

v

’

position

position

position

position

position

position
position
position

position
position
position
position
position

position

define relation POLITICAL_SUBDIVISIONS

CODE

NAME

AREA
INCORPORATION
CAPITAL
POL_TYPE;

define relation POPULATIONS
STATE
CENSUS_1950
CENSUS_1960
CENSUS_1970
CENSUS_1980

position
position
position
position
position

position
position
position
position
position

Sample Database Definition

10,

11

12

13

14;

0,
ll
3

’
’
’

’

@ 3 o Ul

’

2;

0,
1,
3,
4,
5,

~

~ ~

B W R o

B-5

Sample Database Definition

define relation POPULATION_CENTER

YEAR
LATITUDE_DEGREES
LATITUDE_MINUTES
LATITUDE_COMPASS
LONGITUDE_DEGREES

based on LATITUDE_DEGREES
LONGITUDE_MINUTES

based on LATITUDE_MINUTES
LONGITUDE_COMPASS

based on LATITUDE_COMPASS
LOCATION
LATITUDE

computed by

latitude_minutes |
LONGITUDE
computed by
longitude_minutes |

define relation PROVINCES
PROVINCE
PROVINCE_NAME
based on STATE_NAME
AREA
CAPITAL
based on CITY

define relation RIVERS
RIVER
SOURCE
based on PROVINCE
OUTFLOW
LENGTH

define relation RIVER_STATES
STATE
RIVER

define relation SKI_AREAS
NAME
TYPE
CITY
STATE

B-6

(latitude_degrees
latitude_compass),

(longitude_degrees
longitude_compass) ;

position
position
position
position
position

position

position
position

’ ’ l

L

position

position
position

position

position

position
position
position

position
position

position
position
position
position

w N = O

Sample Database Definition

define relation STATES

STATE position 0,
STATE_NAME position 2,
AREA position 3,
STATEHOOD position 4,
CAPITAL

based on CITY position 5;

define relation TOURISM

STATE position O,

Z1P position 1,

CITY position 2,

OFFICE position 3,

GUIDEBOOK position 4;
/*View Definitions */

define view CITY_TON of ¢ in cities
with c.city matching ’*ton*’

C.CITY postion O,
C.STATE postion 1,
C.POPULATION position 2;

define view LARGE_NON_CAPITALS of s in states
cross c in cities over state

cross cs in cities with cs.state = c.state and

cs.city = s.capital and cs.population < c.population
C.CITY position O,
S.STATE_NAME position 1,
S.CAPITAL position 2;

define view LT_AVG_CITIES of ¢ in cities

with c.population < average cl.population of cl in cities
C.CITY position O,
C.STATE position 1;

define view MIDDLE_AMERICA of c in cities
with c.longitude_degrees between 79 and 104
and c.latitude_degrees between 33 and 42

C.CITY position O,
C.STATE position 1,
C.ALTITUDE position 2;

B-7

Sample Database Definition

define view POPULATION_DENSITY of p in populations
Cross s in states over state

P.STATE position 0,
DENSITY_1950

computed by (p.census_1950/s.area) position 1,
DENSITY_1960

computed by (p.census_1960/s.area) position 2,
DENSITY 1970

computed by (p.census_1970/s.area) position 3,
DENSITY_1980

computed by (p.census_1980/s.area) position 4;

define view PROVINCE_VIEW of p in political_subdivisions

with p.pol_type = 'P’
PROVINCE FROM P.CODE position O,
PROVINCE_NAME FROM P.NAME position 1,
P.AREA position 2,
P.CAPITAL position 3;

define view SKI_CITIES of s in states
cross ski in ski_areas with s.state = ski.state

SKI.NAME position O,
SKI.CITY position 1,
S.STATE_NAME position 2;

define view SKI_STATES of c in Ccross_country
reduced to c.state
C.STATE position 0;

define view SMALLER_CITIES of c in cities
with c.population < 500000

C.CITY position 0,
C.STATE position 1,
C.POPULATION position 2; .

define view SMALL_CAPITAL_CITY of s in states
Cross ¢ in cities over state
Cross cs in cities with cs.state = c.state and
cs.city = s.capital and cs.population < c.population
reduced to s.state, s.caital
S.STATE_NAME position O,
S.CAPITAL position 1;

B-8

define view SMALL_CITY_TEAMS of b in baseball_team

cross ¢ in cities with b.city = c.city and

b.state = c.state and b.seating > c.population / 10

C.CITY position
C.STATE position
B.SEATING position
C.POPULATION position
define view STATE_VIEW of p in political_subdivisions
with p.pol_type = 'S’
STATE FROM P.CODE position
STATE-NAME FROM P.NAME postion 1
P.AREA position
STATEHOOD FROM P.INCORPORATION position
P.CAPITAL position

define view VARIED_XC of ¢ in cross_country
with c.comments containing ‘varied-’

C.AREA_NAME position
C.STATE position
C.COMMENTS position

define view VILLES of ¢ in cities
with c.city containing ‘ville’

C.CITY position
C.STATE position
C.POPULATION position

/* Index Definitions */

define index BBT1 for BASEBALL_TEAMS unigue
TEAM_NAME,
CITY;

define index DUPE_CITY for CITIES
STATE;

define index CITIES_1 for CITIES unique
CITY,
STATE;

define index MAYORS_1 for MAYORS unigue
CITY,
STATE;

Sample Database Definition

0,

1,
21
3;

0,
2,
3,
4;

Or
1,
2;

Sample Database Definition

define index RIV1 for RIVERS unique
RIVER,
SOURCE;

define index STATE_1 for STATES unique
STATE;

define index XXX for TOURISM unique
STATE;

/*Trigger Definitions */

define trigger cascading_store for CROSS_COUNTRY
pre store 0:
begin
if not any c¢ in cities
with c.city = new.city and c.state = new.state
store x in cities
X.city = new.city;
X.state = new.state;
end_store;
end;
end_trigger;

A

Access control list (ACL), see Security
Access privileges, see Security
ACL (Access control list), see Security
Ada
DYN example 11-9-11-10, 11-12
Alternate field name 4-20
Apollo
access privileges 8-5
Ada DYN example 11-9-11-10
FORTRAN DYN example 11-10
functions 9-5, 9-7, 9-9
multi-file databases 3-6
Pascal DYN example 11-11-11-12
remote database 3-4
Application integrity 7-3
ascending index 6-9
atlas.gdb database B-1
Attribute, see Field

B

BASIC

DYN example 11-13
Binary datatype 4-4
Blob

datatype 4-10, 4-23
definition 4-10
feature summary 4-10
overview 4-10
reading 8-11
segment lengths 4-10
subtypes 4-10—-4-12
Blob filter

overview 4-12
Boolean expression 4-15

C
C

DYN example 11-13-11-14
Character datatype 4-7
COBOL

DYN example 11-14-11-15

Column

alternate name 4-21
Comments 4-17
commit

two-phase 3-2
Computed field

example 6-5,9-16

modifying 4-23, 5-13

overview 5-5
Concatenated key 2-3
Creating a remote database 3-4

D

Data
formatting 4-19
security, see Security
Data definition
calls to gds routines 12-2
embedded DYN 12-2
embedded SQL 12-2, 12-5
gdef 3-3
modifying with DYN 11-7
overview 1-1,12-1
QLI 12-3-12-5
summary 12-1
Data definition language, see DDL
Data identifier, see Primary key
Data integrity
application 7-3
domain 7-2, 7-3
entity 7-2
overview 7-1
referential 7-2
Data security, see Security
Database
creating 3-3
defining 3-9
defining on UNIX 3-3
defining on VMS 3-3
defining, see also gdef
designing and planning 2-1-2-10
extracting metadata 3-14
file length 3-5

Index- 1

maintaining 3-15
multi-file 3-5

networks 3-2

NFS format information 3-5

page range 3-5

page size 3-5-3-7

planning and designing 2-1-2-10

remote 3-4

sample definition B-1
shadow file 3-7

single-file 3-3

Datatype

binary 4-4

blob 4-10, 4-23

character 4-7

date 4-9

double 4-7

external relation 5-6

float 4-7

integer, see Short datatype, Long
datatype

long 4-4

multi-dimensional array 4-13

overview 4-4

scale factor 4-4

short 4-4

string 4-7

text 4-7

varying text 4-7

Date datatype 4-9

DDL

conventions 3-10

input rules 3-10

interactive 3-12

source files 11-4

DECnet

remote database filenames 3-4

define database

gdef 3-9

define field

DDL 5-3

DLL 4-1

valid_if 7-5

Index-2

define function 9-7
define generator 4-18
define index
overview 6-8
unique 6-8, 7-4
define relation
adding field 4-1
DDL 3-10
overview 5-1
define security_class 8-4
define shadow 3-7
define trigger 7-6
define view 6-3-6-6
Defining data, see Data definition
delete field 4-24
delete function 9-8
delete index 6-11
see also drop index 6-11
delete relation 5-14
delete trigger 7-12
delete view 6-7
descending index 6-9
Domain integrity 7-2, 7-3
Double datatype 4-7
drop field 4-24
DSQL
summary of functions 1-2
Duplicate eliminating in indexes 6-8
DYN
Ada example 11-9-11-10, 11-12
compiling commands 11-7
compiling source file 11-4
creating commands 11-3
DDL source file 11-3
dynamic 11-4
FORTRAN example 11-10, 11-15-11-
16
including in program 11-6
modifying data definitions 11-7
modifying metadata 11-1
overview 11-1
Pascal example 11-11-11-12, 11-16—
11-17

PL/1 example 11-17-11-18
relation to gdef 11-1-11-2
summary of functions 1-2
using 11-3-11-8

Dynamic DDL, see DYN

E

Editing string 4-19
Embedded SQL

summary of functions 1-2
Entity integrity 7-2
Errors

gdef 3-16

Event

definition 10-1
manager 10-3

posting 10-3

relation to event alerters 10-1
table 10-3

transaction control 10-6
wait types 10-4
event_init 10-4
event_wait 10-4
External relation
changing datatype 5-8
converting data 5-9
data access 5-6

data transfer 5-7
definition 5-6

using 5-6-5-11
Extracting metadata 3-14

F

Field
adding with define relation 5-2
alternate names 4-20
assigning name 5-4
attributes 4-2, 5-3
changing attributes 5-3
column names 4-21
comments 4-17
computed 5-5, 5-13
datatypes 4-4

defining 4-1
deleting 4-24
dropping 4-24
edit strings 4-19
global 4-2, 5-13
including in relation 5-3
missing values 4-16
modifying with modify field 4-22, 5-
13
modifying with modify relation 4-22
query header 4-21
query name 4-21
sequential number generator 4-18
validation criteria 4-15, 7-5
File length 3-5
Float datatype 4-7
Foreign key 2-8, 7-2, 7-15
Formatting
data with edit strings 4-19
FORTRAN
DYN example 11-10, 11-15-11-16
Function
accessing from gdef 9-1, 9-16
accessing from programs 9-15
accessing from QLI 9-15
defining 9-6-9-8
deleting 9-8
Function library, creating 9-9-9-14

G

gbak
effect on security 8-6
summary 3-15

gdef
accessing functions from 9-16
advantages of using 1-3
creating database files 3-3
define generator 4-18
defining databases 3-9
defining fields 4-1
effect on security 8-6
errors 3-16
extracting metadata 3-14

Index- 3

interactive 3-12

modifying databases 1-4, 3-9

overview 1-1

relation to DYN 11-1-11-2

relation to QLI 1-2

sample database file 1-4

sample interactive use 1-4

source files 1-3, 3-10

summary of functions 1-1

summary of use 3-9-3-10
GDML

accessing functions 9-15

accessing user defined functions 9-15

events 10-4

trigger language extensions 7-6
gds

date routines 4-9
gds_$decode_date 4-9
gds_$encode_date 4-9
gds_$events 10-4
gds_$print_status 7-7
Global field

advantages 4-2

attributes 4-2

H

Headers for QLI field display 4-21
Heterogeneous networks

overview 3-2
Homogeneous networks 3-2

I

Index

ascending 6-9
considerations 6-10
defining 6-8, 7-4
definition 6-1
deleting 6-11
descending 6-9
examples 6-8
modifying 6-10
multi-segment 6-9
nulls 7-4

Index-4

overview 6-1
unique 6-8, 7-4
when to define 6-8
Integer, see Short datatype, Long
datatype
Integrity of data, see Data integrity
Interactive gdef 3-12
isc_functions table 9-10

K

Key, see Foreign key, Primary key

L
Long datatype 4-4

M

Metadata
changing in host language program
12-5
defining in host language program 12-
5
defining in QLI 12-3-12-5
extracting 3-14
modifying with DYN 11-1
sample database definition B-1
transaction control 12-3-12-5
user defined function 9-1
Missing values
in fields 4-16
modify database
gdef 3-9
modify field
DDL 4-22
modify index
using 6-10
modify relation
adding field 4-1
DDL 4-22
modifying field 4-1, 4-24
modify trigger
using 7-11
Modifying data

SQL 6-7
Modifying data definitions with DYN

11-7
Multi-dimensional array , see Array
Multi-file database

creating 3-5

primary file 3-5

secondary file 3-5

writing to InterBase database 3-6
Multiple databases, accessing 3-2
Multiple triggers 7-8
Multi-segment index 6-9

N

Network

defining databases on 3-2
heterogeneous 3-2
homogeneous 3-2

node name formats 3-4

NFS

database format information 3-5
Normalization 2-5

Null values

indexes 7-4

O
Object
defined 8-1
in security scheme 8-1

P
Page range
in database files 3-5
Page size
overriding default 3-7
when to increase 3-7
Partial-key dependency 2-6
Pascal
DYN example 11-11-11-12, 11-16-11-
17
PL/1
DYN example 11-17-11-18

Post-trigger indicator 7-6
Pre-trigger indicator 7-6
Primary key 2-3, 7-2
Privileges, see Security

Q
QLI
accessing user defined functions 9-15
alternate column names 4-21
alternate field names 4-20
blob filters 4-12
blob segment length 4-10
defining data 12-3
edit strings 4-19
functions 9-15
metadata updating 12-3
relation to gdef 1-2
restructure 5-8,5-9
show function 9-8
summary of functions 1-2
transactions 12-3
transferring data 5-7
trigger messages 7-7
Query header 4-21
Query name 4-21
query_header 4-21
query_name 4-20

R

rdb$, see System relations/variables
rdb$user_name 8-11
Referential integrity 7-2, 7-15
Relation
adding a new field 5-2
adding existing field 5-3
computed field 5-5,5-13
defining in DDL 5-1
deleting in GDML 5-14
external 5-6
modifying in GDML 5-12
overview 5-1
system A-1
Remote database

Index- 5

creating 3-4
Repeating group 2-5
Restoring a database

summary 3-15

S

Scale factor 4-4
Scale of numerics 4-4
Security
access control list (ACL) 8-4, 8-6
access privileges 8-2
ACL (access control list) 8-4, 8-6
assigning to an object 8-7
changing 8-14
considerations for defining classes 8-6
defining 8-4
designing the scheme 8-8
examples 8-4-8-6, 8-11-8-13
gbak effect on 8-6
gdef effect on 8-6
hierarchy 8-3
modifying 8-14
object 8-1
order of access definitions 8-8
overview 8-1
see also grant, revoke 8-1
views 8-9
Shadowing
defining 3-7
Sharing data across networks 3-2
Short datatype 4-4
Single-file database 3-3
Source files 1-3, 11-3
SQL
data defining 12-5
security 8-2
String datatype
see Character datatype, Varying
datatype
Summary of functions
DSQL 1-2
DYN 1-2
Embedded SQL 1-2

Index-6

gdef 1-1

QLI 1-2

Sun

functions 9-5, 9-10-9-11

Switches

gdef 3-14

System relations/variables

changing 12-3

definition 3-9

list A-1

rdb$database A-2

rdb$dependencies A-3

rdb$field_dimensions A-9

rdb$field_position 12-3

rdb$fields 4-3,4-22,5-2, 5-5, A-4—A-8

rdb$files A-10

rdb$filters A-11

rdb$formats A-12

rdb$function_arguments A-14-A-
15

rdb$functions A-13

rdb$generators A-16

rdb$index_segments 12-6, A-17

rdb$indices 12-6, A-18-A-19

rdb$pages A-20

rdb$relation_fields 4-3,5-2, 5-4, 12-
3, A-24-A-26

rdb$relations A-21-A-23

rdb$security_classes 8-4, 8-8, A-27

rdb$transactions A-28

rdb$trigger_messages A-31

rdb$triggers A-29-A-30

rdb$types A-32

rdb$user_privileges A-33

rdb$view_relations A-34

System variables

see System relations/variables

T
TCP/IP
remote nodes 3-4
Text datatype
see Char datatype, Varying dataype

Transaction
event control 10-6
metadata changes in 12-3
triggers in 7-12-7-15
Transitive dependency 2-7
Trigger
aborting 7-7

accessing user defined functions 9-16

action indicator 7-6
activity indicator 7-6
components 7-7
deactivating 7-12
defining 7-6-7-9
deleting 7-12

examples 7-10, 7-15-7-19
message statement 7-7
modifying 7-11
multiple 7-8

overview 7-6

posting events with 10-3
relationship to other triggers 7-14
sequence indicator 7-6
time indicators 7-6
transactions 7-13
undoing 7-13

updating 7-11

views 7-10

Triggers

views 6-6

Two-phase commit 3-2

U

UDF
see User defined function 9-1
unique 6-8, 7-4
index option 6-8, 7-4
Uniqueness of relations 7-2
UNIX
creating databases 3-3
functions 9-5, 9-11-9-13
multi-file databases 3-6
security 8-5
User defined function

accessing 9-15

accessing from gdef 9-16
accessing from host language 9-15
accessing from QLI 9-15
compiling 9-5

creating function libraries 9-9
defining 9-6-9-8

deleting 9-8

function libraries 9-9-9-14
overview 9-1

valid_if 9-7

writing and compiling 9-3-9-5

A%
valid_if
missing values 4-16
user defined function 9-7
using for validation 7-5
Validating a database 7-2, 7-5
Validating fields 4-15
Varying datatype 4-7
VAX
Ada DYN example 11-12
BASIC DYN example 11-13
C DYN example 11-13-11-14
COBOL DYN example 11-14-11-15

FORTRAN DYN example 11-15-11-16

Pascal DYN example 11-16-11-17
PL/1 DYN example 11-17-11-18
View
accessing multiple relations 6-4
defining in GDML 6-1, 6-3
deleting 6-7
examples 6-3-6-4
limiting fields/records 6-3—6-4
security 8-9-8-10
trigger 7-10
VMS
database creating 3-3
database security 8-6
_ function 9-5,9-13-9-14
multi-file database 3-6
security 8-5

Index- 7

